
The Nature of Computing†

Bienvenido Vélez, Ph.D.
Assistant Professor of Computer Science

University of Puerto Rico Mayagüez
bvelez@acm.org

Introduction

Two and a half years ago I joined the Department of Electrical and Computer
Engineering faculty at the University of Puerto Rico – Mayagüez (UPRM) just months
after completing my Doctor of Philosophy degree in Computer Science and Engineering.
I envisioned that, having the only school of Engineering within the UPR system, the
UPRM was the only place in our island with the potential to become a world recognized
institution in my discipline. This vision was founded on the unique and critical symbiosis
that, I believe, must exist between successful CS and Engineering programs.

One of the first cultural shocks I encountered was the relatively inaccurate understanding
of the discipline of Computer Science that permeated our institution then. One of the
common beliefs equated Computer Science to Computer Programming. Others bounded
Computer Science to the realm of “software”. To some the idea that Computing may
have existed long before the advent of the electronic computer was radical. “Computing
without computers? Nonsense! Computing is about solving problems using the
computer.” Later on, I learned that these misconceptions were not a particular
phenomenon in our institution, but were rather common outside the confines of Computer
Science atmospheres.

What is Computing about? The discipline touches on all the areas mentioned above, so
those inaccurate notions are somewhat justified. However, none of those notions by
itself is comprehensive. I have seen several agreeable definitions of the discipline in the
literature, including some rather long ones. The following definition offers a compact yet
complete alternative:

Computing is the study of the phenomenon of Computation; the process
of transforming information

Figure 1 explains how the computation process is used to solve real problems. First of
all, an instance of the problem is encoded as input information. This input is transformed
into some output information that, once decoded, yields a solution to the problem. A
computing system or device can be said to solve a problem if and only if it is capable of
producing the correct output for each possible input. For convenience I will use the term
computer to refer to any device or system, not just electronic, capable of performing
computation.

† COMPEL 2002 Plenary Talk

The Nature of Computing COMPEL 2002 10

The Computation Process

0110110
0101010
0101…

encode

0110110
0101010
0101…

compute

Problem

decode

Solution

Integer IntegerInteger
Function

Figure 1. Steps involved in the process of computation

The discipline of Computing1 addresses the following three fundamental questions:

? What can be computed? (computing models and computability)
? What can be computed efficiently? (complexity)
? How can we build practical computing devices and systems? (architectures and

systems)

This definition clearly shows the lack of completeness of the common conceptions of the
discipline. First, we can see that computer programming only encompasses the process
of encoding algorithms into information. This is not to say that programming is a trivial
process. Writing efficient, reliable programs remains a difficult, time-consuming and
extremely expensive process. Second, we can see that computing is not exclusively
concerned with software but rather with any device or system capable of performing
computation.

The discipline of Computer Science has all the ingredients that comprise a traditional
Engineering discipline. It is built on solid theoretical foundations which have been
developed specifically to nurture the discipline and is concerned with the design and
construction of real computing systems and devices. Consider the analogy that can be
established with, say, Electrical Engineering (EE). Although built on solid theoretical

1 In the remainder of this talk I shall use the terms Computer Science and Computing interchangeably.

foundations (e.g. Ohm’s Law, Kirchoff’s law, phasors) specifically developed for the
discipline, EE is to a greater extent concerned with the design and construction of
practical electrical systems and devices. The name Computer Science is mostly a
historical accident. As Professor Gerald J. Sussman said during a lecture I once attended:
“Computer Science is more about Engineering than about Science.”

Due to space limitations I would like to organize the remainder of the talk as follows.
First, I would like to explain in some depth the basic theoretical foundations of the
discipline of Computing. Second, I will share with you what I think are some of the most
ubiquitous concepts or ideas in Computing that I believe everyone willing to venture into
the discipline should understand and readily apply.

Computing Models and Computability Theory

There are many ways of encoding problems into I/O information useful to a computer.
In today’s typical electronic computer, all information gets encoded as sequences of
binary voltage levels, or bits (binary digits). But every binary pattern can be interpreted
as a base 2 integer. Therefore, once a problem instance is encoded it can be viewed as an
integer number. A computer is essentially an information transformation mapping, but
since input information can be encoded as a number, every such mapping must have a
corresponding integer function. A computation process implements an integer function
mapping every possible input integer to the corresponding output integer. In light of
these definitions, the first fundamental question of Computing can be rephrased as:

Which integer functions are computable?

In the late thirties the English mathematician Alan Turing proved that there were
problems with no computational solution [2]. He proved that by introducing first a
mathematical model of a computing machine that he called the logical computing
machine (LCM). This model became later to be known as the Turing Machine. As
shown in Figure 3, the machine consisted of a controlling finite state machine and an
infinite input/output tape. The machine always started from an initial state. On each
transition the machine examined the contents of the tape under the tape head. Based on
this symbol and the current state, the machine would decide the next state, an output
symbol to write on the tape and the direction along which the tape head should be moved
one position.

Turing provided rationale to justify that this simple model of a computer captured the
whole nature of computation. He argued that the Turing Machine was powerful enough
to compute anything that was computable by any realizable machine. In the same year of
1936, the logician Alonso Church [1] also conjectured that the lambda calculus, when
viewed as a computational model, was also capable of computing all computable
functions. Turing showed that his LCM was equivalent in computing power to Church’s
lambda calculus. In [2] Turing used his model to prove that there were problems that
were undecidable, that is problems that no Turing Machine could solve. The most
famous such problem became to be known as the Halting Problem (Figure 2):

Can we devise a Turing Machine to determine if a program ever terminates?

The Nature of Computing COMPEL 2002 11

Computability

All Integer Functions
(IF)

Halting
Problem

IF CF

Computable
Integer Functions

(CF)

Figure 2. Relationship between integer and computable functions

In essence, Turing proved that if such a machine exists, then it would be possible to
construct a “crazy” machine producing mathematically contradictory results. It is worth
remarking at this point that the foundations of modern Computing were laid out even
before the first electronic computer became available. Computing was born before the
electronic computer.

Although not apparent at first glance, the undecidability of the Halting Problem has had
and continues to have profound implications all throughout Computer Science. For
instance, the undecidability of the Halting Problem implies that it is impossible to
automatically determine if a program has any bugs. It also implies that it is not possible

to build a compiler that generates optimal code. In general, many interesting properties
that we might want to determine about programs are known to be undecidable.

The Nature of Computing COMPEL 2002 13

Mathematical Computers:
The Turing Machine (1936)

Alan Turing

0 1

0 1

FSM

Infinite
I/O

TAPE
0/{1,0,R}

1/{0,1,R}

Tape
Head

Figure 3. Turing Machines

Interpretation, Programmability and Universal Computation

Another remarkable contribution by Turing was the idea of a universal Turing machine
(UTM). A UTM is capable of simulating any other Turing machine. That is, given a
description of an input machine M and its input tape T, the UTM can reproduce the
behavior of M on T. By constructing a UTM Turing demonstrated that the problem of
simulating any Turing machine was decidable. One of the most interesting implications
of this result was a way of building a computer that can solve several problems. This laid
out the foundation of the modern general purpose computer. A general purpose
computer is thus an interpreter of programs, i.e. algorithms expressed in some
programming language.

The Nature of Computing COMPEL 2002 16

The Universal Turing Machine (UTM)
The Paradigm for Modern General Purpose Computers

Universal TM

Coded TM M Coded Tape for M

•Capable of Emulating Every other TM
•Shown possible by Alan Turing (1936)
•BIG IDEA: INTEPRETATION!!!

Software
(flexible) Hardware

(fast)

Figure 4. Universal Turing Machines

We can now clearly see that what we normally call programming is the process of
encoding an algorithm (a Turing machine) for solving a problem on a general purpose
computer. This idea of programmability is not only useful at the hardware level, but also
at other levels of abstraction. For instance, many modern software applications provide a
programmatic interface allowing users to customize or add functionality to the
application making it unnecessary to change the software for this purpose. Examples of
these types of applications include many editor (e.g. EMACS), mathematical processing
(e.g. MATLAB) and circuit simulation packages (e.g. PSPICE).

Turing introduced the UTM to avoid designing a different Turing Machine for each
problem. This became crucial to the design of practical computers. The need to reuse
hardware for solving different problems became evident. The ideas of programmability
and interpretation provided a solution. The same hardware would be designed to
interpret a variety of software. Notice however, that the difference between software and
hardware is one of level of abstraction. Both are simply different models of computing.

The architecture of the electronic computing instrument proposed by John von Neumann
[1] and others (see Figure 5) turned remarkably similar to Turing’s UTM. The now
called von Neumann architecture organizes a processor into three main components: a
central processing unit (CPU), a memory unit, and one or more input/output devices. The
CPU is comprised of control unit (a finite state machine) and the data paths. A processor
is said to be universal if and only if it can emulate a UTM. This doesn’t necessarily mean
that the processor is complex and has a rich instruction set. As many of you are probably

aware of, this architecture forms the basis of virtually all successful computer
architectures to this day.

The Nature of Computing COMPEL 2002 19

DataPaths

PC
ABR

ALU

AC

Practical Universal Computers
(John) Von Neumann Architecture (1945)

Program

Data

Memory

Control Unit
(FSM)

CPU

CPU is a universal TM
An interpreter of some programming language (PL)

status control

This looks
just like a
TM Tape

Figure 5. The von Neumann Architecture

Abstraction and Building Blocks

Besides the notions of programmability and interpretation another important idea
commonly exploited in Computing is that of abstraction. It is my belief that the use of
abstraction is common throughout engineering. According to Merriam-Webster’s
Dictionary abstraction is “the process of considering apart from application to or
association with a particular instance”.

Another word commonly used to name an abstraction is a building block. When
designing a building block, one hides irrelevant details and keeps only what is essential to
understand the role of the building block in higher and more complex abstractions. Thus,
the process of abstraction is inherently recursive in nature. Perhaps what distinguishes
Computing from other engineering disciplines that ubiquitously exploit abstraction is that
the concept is as central to the discipline as the concept of interpretation itself. After all,
the fundamental role of a programming language is to provide the abstractions that allow
the most effective expression of general purpose algorithms.

The central nature of the abstraction in Computing has led to the study of a multitude of
abstraction mechanisms. This, in turn has led to the development of general principles
that guide the design of effective abstractions. These principles, I believe, apply and can

be extremely useful in other engineering branches. I have summarized these guidelines
as follows:

? Provides a simple and easy to remember contract
? The contract hides details irrelevant to the effective application of the abstraction
? The contract is general and orthogonal
? The contract exhibits a closure property

Example of a successful abstractions often provided by programming languages are
functions and types. In this context orthogonality implies that if functions allow
parameters to have types, then any type should be permitted. Orthogonality is about
avoiding special cases. The closure property is illustrated by languages that allow
functions to call other functions. Closure facilitates the design of complex abstraction by
combining many simple ones.

Contracts have different names in different disciplines. In electrical engineering they
take the form of electrical components or devices. In industrial and chemical engineering
they are embodied as industrial processes. In software development they show up as
application development interfaces (API’s) or abstract data types.

Summary

Computing is a young but rapidly maturing discipline with solid theoretical foundations.
It is not surprising that much disagreement remains concerning its scope and extent.
Some important Computer Scientists are beginning to view the discipline as evolving
towards Engineering. Computing can contribute to Engineering in important ways, and
vice versa. Although this symbiosis has already paid considerable dividends, the best is
yet to come.

"Computer Science is no more about computers than
Astronomy is about telescopes"

 E. Dijkstra

References

1. Burks, A. W., Goldstine, H. H., and von Neumann, J. 1963. Preliminary discussion of

the logical design of an electronic computing instrument. In Taub, A. H., editor, John
von Neumann Collected Works, The Macmillan Co., New York, Volume V, 34-79.

2. Church, Alonso.‘An Unsolvable Problem of Elementary Number Theory’. American
Journal of Mathematics, 58, 345-363.

3. Turin, Alan M. ‘On Computable Numbers, with an application to the
Entscheidungsproblem’. In the Proceedings of the London Mathematical Society, ser.
2. vol. 42 (1936-7), pp.230-265; corrections, Ibid, vol 43 (1937) pp. 544-546.

