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Introduction 
 
Two and a half years ago I joined the Department of Electrical and Computer 
Engineering faculty at the University of Puerto Rico – Mayagüez (UPRM) just months 
after completing my Doctor of Philosophy degree in Computer Science and Engineering.  
I envisioned that, having the only school of Engineering within the UPR system, the 
UPRM was the only place in our island with the potential to become a world recognized 
institution in my discipline.  This vision was founded on the unique and critical symbiosis 
that, I believe, must exist between successful CS and Engineering programs.  
 
One of the first cultural shocks I encountered was the relatively inaccurate understanding 
of the discipline of Computer Science that permeated our institution then.  One of the 
common beliefs equated Computer Science to Computer Programming.   Others bounded 
Computer Science to the realm of “software”.  To some the idea that Computing may 
have existed long before the advent of the electronic computer was radical. “Computing 
without computers? Nonsense!  Computing is about solving problems using the 
computer.”  Later on, I learned that these misconceptions were not a particular 
phenomenon in our institution, but were rather common outside the confines of Computer 
Science atmospheres. 
 
What is Computing about?   The discipline touches on all the areas mentioned above, so 
those inaccurate notions are somewhat justified.   However, none of those notions by 
itself is comprehensive. I have seen several agreeable definitions of the discipline in the 
literature, including some rather long ones.  The following definition offers a compact yet 
complete alternative: 
 

Computing is the study of the phenomenon of Computation; the process 
of transforming information 

 
Figure 1 explains how the computation process is used to solve real problems.  First of 
all, an instance of the problem is encoded as input information.  This input is transformed 
into some output information that, once decoded, yields a solution to the problem. A 
computing system or device can be said to solve a problem if and only if it is capable of 
producing the correct output for each possible input.  For convenience I will use the term 
computer to refer to any device or system, not just electronic, capable of performing 
computation.   
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Figure 1. Steps involved in the process of computation 

 
The discipline of Computing1 addresses the following three fundamental questions: 

 
?  What can be computed? (computing models and computability) 
?  What can be computed efficiently? (complexity) 
?  How can we build practical computing devices and systems? (architectures and 

systems) 
 
This definition clearly shows the lack of completeness of the common conceptions of the 
discipline.   First, we can see that computer programming only encompasses the process 
of encoding algorithms into information.  This is not to say that programming is a trivial 
process.  Writing efficient, reliable programs remains a difficult, time-consuming and 
extremely expensive process.   Second, we can see that computing is not exclusively 
concerned with software but rather with any device or system capable of performing 
computation. 
 
The discipline of Computer Science has all the ingredients that comprise a traditional 
Engineering discipline.  It is built on solid theoretical foundations which have been 
developed specifically to nurture the discipline and is concerned with the design and 
construction of real computing systems and devices.  Consider the analogy that can be 
established with, say, Electrical Engineering (EE).  Although built on solid theoretical 

                                                
1 In the remainder of this talk I shall use the terms Computer Science and Computing interchangeably. 



foundations (e.g. Ohm’s Law, Kirchoff’s law, phasors) specifically developed for the 
discipline, EE is to a greater extent concerned with the design and construction of 
practical electrical systems and devices.  The name Computer Science is mostly a 
historical accident.  As Professor Gerald J. Sussman said during a lecture I once attended: 
“Computer Science is more about Engineering than about Science.” 
 
Due to space limitations I would like to organize the remainder of the talk as follows.  
First, I would like to explain in some depth the basic theoretical foundations of the 
discipline of Computing.  Second, I will share with you what I think are some of the most 
ubiquitous concepts or ideas in Computing that I believe everyone willing to venture into 
the discipline should understand and readily apply. 
 
Computing Models and Computability Theory 
 
There are many ways of encoding problems into I/O information useful to a computer.   
In today’s typical electronic computer, all information gets encoded as sequences of 
binary voltage levels, or bits (binary digits).  But every binary pattern can be interpreted 
as a base 2 integer.  Therefore, once a problem instance is encoded it can be viewed as an 
integer number.  A computer is essentially an information transformation mapping, but 
since input information can be encoded as a number, every such mapping must have a 
corresponding integer function.  A computation process implements an integer function 
mapping every possible input integer to the corresponding output integer.  In light of 
these definitions, the first fundamental question of Computing can be rephrased as: 
 

Which integer functions are computable? 
 

In the late thirties the English mathematician Alan Turing proved that there were 
problems with no computational solution [2].   He proved that by introducing first a 
mathematical model of a computing machine that he called the logical computing 
machine (LCM).  This model became later to be known as the Turing Machine.   As 
shown in Figure 3, the machine consisted of a controlling finite state machine and an 
infinite input/output tape.  The machine always started from an initial state. On each 
transition the machine examined the contents of the tape under the tape head.  Based on 
this symbol and the current state, the machine would decide the next state, an output 
symbol to write on the tape and the direction along which the tape head should be moved 
one position. 

 



Turing provided rationale to justify that this simple model of a computer captured the 
whole nature of computation.  He argued that the Turing Machine was powerful enough 
to compute anything that was computable by any realizable machine.  In the same year of 
1936, the logician Alonso Church [1] also conjectured that the lambda calculus, when 
viewed as a computational model, was also capable of computing all computable 
functions.  Turing showed that his LCM was equivalent in computing power to Church’s 
lambda calculus.  In [2] Turing used his model to prove that there were problems that 
were undecidable, that is problems that no Turing Machine could solve.  The most 
famous such problem became to be known as the Halting Problem (Figure 2): 
 

Can we devise a Turing Machine to determine if a program ever terminates?  
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Figure 2. Relationship between integer and computable functions 

 
In essence, Turing proved that if such a machine exists, then it would be possible to 
construct a “crazy” machine producing mathematically contradictory results.  It is worth 
remarking at this point that the foundations of modern Computing were laid out even 
before the first electronic computer became available.  Computing was born before the 
electronic computer. 
 
Although not apparent at first glance, the undecidability of the Halting Problem has had 
and continues to have profound implications all throughout Computer Science.  For 
instance, the undecidability of the Halting Problem implies that it is impossible to 
automatically determine if a program has any bugs.  It also implies that it is not possible 



to build a compiler that generates optimal code.  In general, many interesting properties 
that we might want to determine about programs are known to be undecidable. 
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Figure 3. Turing Machines 

 
Interpretation, Programmability and Universal Computation 
 
Another remarkable contribution by Turing was the idea of a universal Turing machine 
(UTM).  A UTM is capable of simulating any other Turing machine.  That is, given a 
description of an input machine M and its input tape T, the UTM can reproduce the 
behavior of M on T.   By constructing a UTM Turing demonstrated that the problem of 
simulating any Turing machine was decidable.   One of the most interesting implications 
of this result was a way of building a computer that can solve several problems. This laid 
out the foundation of the modern general purpose computer.   A general purpose 
computer is thus an interpreter of programs, i.e. algorithms expressed in some 
programming language. 
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Figure 4. Universal Turing Machines 

We can now clearly see that what we normally call programming is the process of 
encoding an algorithm (a Turing machine) for solving a problem on a general purpose 
computer.  This idea of programmability is not only useful at the hardware level, but also 
at other levels of abstraction.  For instance, many modern software applications provide a 
programmatic interface allowing users to customize or add functionality to the 
application making it unnecessary to change the software for this purpose.  Examples of 
these types of applications include many editor (e.g. EMACS), mathematical processing 
(e.g. MATLAB) and circuit simulation packages (e.g. PSPICE). 
 
Turing introduced the UTM to avoid designing a different Turing Machine for each 
problem.  This became crucial to the design of practical computers.   The need to reuse 
hardware for solving different problems became evident.  The ideas of programmability 
and interpretation provided a solution.  The same hardware would be designed to 
interpret a variety of software.  Notice however, that the difference between software and 
hardware is one of level of abstraction.  Both are simply different models of computing. 
 
The architecture of the electronic computing instrument proposed by John von Neumann 
[1] and others (see Figure 5) turned remarkably similar to Turing’s UTM.  The now 
called von Neumann architecture organizes a processor into three main components: a 
central processing unit (CPU), a memory unit, and one or more input/output devices.  The 
CPU is comprised of control unit (a finite state machine) and the data paths.  A processor 
is said to be universal if and only if it can emulate a UTM.  This doesn’t necessarily mean 
that the processor is complex and has a rich instruction set.  As many of you are probably 



aware of, this architecture forms the basis of virtually all successful computer 
architectures to this day.  
 

The Nature of Computing COMPEL 2002 19

DataPaths

PC
ABR

ALU

AC

Practical Universal Computers
(John) Von Neumann  Architecture (1945)

Program

Data

Memory

Control Unit
(FSM)

CPU

CPU is a universal TM 
An interpreter of some programming language (PL)

status control

This looks 
just like a 
TM Tape

 
Figure 5. The von Neumann Architecture 

 
Abstraction and Building Blocks 
 
Besides the notions of programmability and interpretation another important idea 
commonly exploited in Computing is that of abstraction.  It is my belief that the use of 
abstraction is common throughout engineering.  According to Merriam-Webster’s 
Dictionary abstraction is “the process of considering apart from application to or 
association with a particular instance”.    
 
Another word commonly used to name an abstraction is a building block.  When 
designing a building block, one hides irrelevant details and keeps only what is essential to 
understand the role of the building block in higher and more complex abstractions.  Thus, 
the process of abstraction is inherently recursive in nature.  Perhaps what distinguishes 
Computing from other engineering disciplines that ubiquitously exploit abstraction is that 
the concept is as central to the discipline as the concept of interpretation itself.  After all, 
the fundamental role of a programming language is to provide the abstractions that allow 
the most effective expression of general purpose algorithms. 
 
The central nature of the abstraction in Computing has led to the study of a multitude of 
abstraction mechanisms.  This, in turn has led to the development of general principles 
that guide the design of effective abstractions.  These principles, I believe, apply and can 



be extremely useful in other engineering branches.  I have summarized these guidelines 
as follows: 
 

?  Provides a simple and easy to remember contract 
?  The contract hides details irrelevant to the effective application of the abstraction 
?  The contract is general and orthogonal 
?  The contract exhibits a closure property 

 
Example of a successful abstractions often provided by programming languages are 
functions and types.  In this context orthogonality implies that if functions allow 
parameters to have types, then any type should be permitted. Orthogonality is about 
avoiding special cases.  The closure property is illustrated by languages that allow 
functions to call other functions.  Closure facilitates the design of complex abstraction by 
combining many simple ones. 
 
Contracts have different names in different disciplines.  In electrical engineering they 
take the form of electrical components or devices.  In industrial and chemical engineering 
they are embodied as industrial processes. In software development they show up as 
application development interfaces (API’s) or abstract data types. 
 
Summary 
 
Computing is a young but rapidly maturing discipline with solid theoretical foundations.  
It is not surprising that much disagreement remains concerning its scope and extent.  
Some important Computer Scientists are beginning to view the discipline as evolving 
towards Engineering.  Computing can contribute to Engineering in important ways, and 
vice versa.  Although this symbiosis has already paid considerable dividends, the best is 
yet to come. 
 

"Computer Science is no more about computers than 
Astronomy is about telescopes"  

     E. Dijkstra 
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