
ICOM 4029 Compiler Writing Handout 2

Fall 2003 page 1 of 4

Programming Assignment II

Due Tuesday, October 7, 2003
1. Overview
Programming assignments II-V will direct you to design and build a compiler for Cool.
Each assignment will cover one component of the compiler: lexical analysis, parsing,
semantic analysis, and code generation. Each assignment will ultimately result in a
working compiler phase which can interface with other phases. You will have an option
of doing your projects in C++ or Java.

For this assignment you are to write a lexical analyzer, also called a scanner, using a
lexical analyzer generator (The C++ tool is called flex; the Java tool is called jlex.) You
will describe the set of tokens for Cool in an appropriate input format and the analyzer
generator will generate the actual code (C++ or Java) for recognizing tokens in Cool
programs. You must work in a group for this assignment (where a group consists of one
or two people).

2. Files and Directories
To get started, create a directory where you want to do the assignment and execute one of
the following commands in that directory. For the C++ version of the assignment, you
should type:

gmake -f ~icom4029/cool/assignments/PA2/Makefile source

For Java, type:

gmake -f ~icom4029/cool/assignments/PA2J/Makefile source

(notice the “J" in the path name). This command will copy a number of files to your
directory. Some of the files will be copied read-only (using symbolic links). You should
not edit these files. In fact, if you make and modify private copies of these files, you may
find it impossible to complete the assignment. See the instructions in the README file.
The files that you will need to modify are:

• cool.flex (in the C++ version) / cool.lex (in the Java version)
This file contains a skeleton for a lexical description for Cool. You can actually build a
scanner with this description but it does not do much. You should read the flex/jlex
manual to figure out what this description does do. Any auxiliary routines that you wish
to write should be added directly to this file in the appropriate section (see comments in
the file).

ICOM 4029 Compiler Writing Handout 2

Fall 2003 page 2 of 4

• test.cl
This file contains some sample input to be scanned. It does not exercise all of the lexical
specification but it is nevertheless an interesting test. It is not a good test to start with, nor
does it provide adequate testing of your scanner. Part of your assignment is to come up
with good testing inputs and a testing strategy. (Don't take this lightly - good test input is
difficult to create, and forgetting to test something is the most likely cause of lost points
during grading.)

You should modify this file with tests that you think adequately exercise your scanner.
Our test.cl is similar to a real Cool program, but your tests need not be. You may
keep as much or as little of our test as you like.

• README
This file contains detailed instructions for the assignment. You should also edit this file to
include the write-up for your project. You should explain design decisions, why your
code is correct, and why your test cases are adequate. It is part of the assignment to
clearly and concisely explain things in text as well as to comment your code.

Although these files as given are incomplete, the lexer does compile and run (gmake
lexer). There are a number of useful tips in the README file.

3. Scanner Results
You should follow the specification of the lexical structure of Cool given in Section 10
and Figure 1 of the CoolAid. Your scanner should be robust. It should work for any
conceivable input. For example, you must handle errors such as an EOF occurring in the
middle of a string or comment, as well as string constants that are too long. These are just
some of the errors that can occur; see the manual for the rest.

You must make some provision for graceful termination if a fatal error occurs. Core
dumps or uncaught exceptions are unacceptable.

Programs tend to have many occurrences of the same lexeme. For example, an identifier
generally is referred to more than once in a program (or else it isn't very useful!). To save
space and time, a common compiler practice is to store lexemes in a string table. We
provide a string table implementation for both C++ and Java. See the following sections
for the details.

All errors will be passed along to the parser. The Cool parser knows about a special error
token called ERROR, which is used to communicate errors from the lexer to the parser.
There are several requirements for reporting and recovering from lexical errors:

• When an invalid character (one which can't begin any token) is encountered, a string

containing just that character should be returned as the error string. Resume lexing at
the following character.

• When a string is too long, or contains invalid characters, that should be reported.
Lexing should resume after the end of the string.

ICOM 4029 Compiler Writing Handout 2

Fall 2003 page 3 of 4

• If a string contains an unescaped newline, report that, and resume lexing at the
beginning of the next line – we assume the programmer simply forgot the close-
quote.

• If a comment remains open when EOF is encountered, report that. Do not tokenize
the comment's contents simply because the terminator is missing. (This applies to
strings as well.)

• If you see “*)" outside a comment, report this as an unmatched comment terminator,
rather than tokenzing it as * and).

• Do not test whether integer literals fit within the representation specified in the Cool
manual - simply create a Symbol with the entire literal's text as its contents,
regardless of its length.

There is an issue in deciding how to handle the special identifiers for the basic classes
(Object, Int, Bool, String), SELF TYPE, and self. However, this issue doesn't actually
come up until later phases of the compiler. The scanner should treat the special
identifiers exactly like any other identifier.

Your scanner should maintain the variable curr_lineno that indicates which line in the
source text is currently being scanned. This feature will aid the parser in printing useful
error messages.

Your scanner should convert escape characters in string constants to their correct values.
For example, if the programmer types these eight characters:

"ab\ncd"

your scanner would return a token whose semantic value is these 5 characters:

ab¶cd

In this example, we use ¶ to represent the ascii code for newline. In both Flex and JLex,
you can produce this code by typing \n.

Finally, note that if the lexical specification is incomplete (some input has no regular
expression that matches) then the scanners generated by both flex and jlex do undesirable
things. Make sure your specification is complete.

4. Notes for the C++ version of the assignment
If you are working on the Java version, skip to the following section.

• Each call on the scanner returns the next token and lexeme from the input. The value

returned by the function cool_yylex is an integer code representing the syntactic
category: whether it is an integer literal, semicolon, the if keyword, etc. The codes for

ICOM 4029 Compiler Writing Handout 2

Fall 2003 page 4 of 4

all tokens are defined in the file cool-parse.h. The second component, the
semantic value or lexeme, is placed in the global union cool_yylval, which is of
type YYSTYPE. The type YYSTYPE is also defined in cool-parse.h. The
tokens for single character symbols (e.g., “;" and “,", among others) are represented
just by the integer (ASCII) value of the character itself. All of the single character
tokens are listed in the grammar for Cool in the CoolAid.

• For class identifiers, object identifiers, integers and strings, the semantic value should
be a Symbol stored in the field cool_yylval.symbol. For boolean constants, the
semantic value is stored in the field cool_yylval.boolean. Except for errors
(see below), the lexemes for the other tokens do not carry any interesting information.

• We provide you with a string table implementation, which is discussed in detail in A
Tour of the Cool Support Code and documentation in the code. For the moment, you
only need to know that the type of string table entries is Symbol.

• When a lexical error is encountered, the routine cool yylex should return the token
ERROR. The semantic value is the string representing the error message, which is
stored in the field cool_yylval.error_msg (note that this field is an ordinary
string, not a symbol). See previous section for information on what to put in error
messages.

5. Notes for the Java version of the assignment
 [If you are interested in this sections visit the UC Berkeley CS 164 Spring 2003
webpage]

6. Testing the Scanner
There are at least two ways that you can test your scanner. The first way is to generate
sample inputs and run them using lexer which prints out the line number and the lexeme
of every token recognized by your scanner. The other way, when you think your scanner
is working, is to try running mycoolc to invoke your lexer together with all other
compiler phases (which we provide). This will be a complete Cool compiler that you can
try on the sample programs and your program from Assignment I.

7. What to Turn In
Instructions for electronically submitting your assignment will be sent by email.

