
ICOM 4036: PROGRAMMING
LANGUAGES

ICOM 4036: PROGRAMMING
LANGUAGES

Lecture Lecture 44
Functional ProgrammingFunctional Programming

The Case of SchemeThe Case of Scheme

9/18/20039/18/2003

Required ReadingsRequired Readings

TexbookTexbook (R. (R. SebestaSebesta Concepts of Concepts of PLsPLs))
Chapter 15: Functional Programming LanguagesChapter 15: Functional Programming Languages

Supplementary ReadingSupplementary Reading
“Lambda the Ultimate Imperative” Guy L. Steele“Lambda the Ultimate Imperative” Guy L. Steele
(available at the course website in PDF format)(available at the course website in PDF format)

Scheme Language DescriptionScheme Language Description
Revised Report on the Algorithmic Language SchemeRevised Report on the Algorithmic Language Scheme
(available at the course website in Postscript format)(available at the course website in Postscript format)

At least one exam question will cover these readings

AdministriviaAdministrivia

Class accounts in Linux Lab availableClass accounts in Linux Lab available
Get you account ID in classGet you account ID in class
Initial password: Initial password: ChangeMeChangeMe
Change your password TODAY!Change your password TODAY!

Exam I DateExam I Date
October 7, 2003 in SOctober 7, 2003 in S--113 6113 6--8PM8PM
Practice problems and outline will be distributed next weekPractice problems and outline will be distributed next week

Other exam dates (Mark your calendars)Other exam dates (Mark your calendars)
Exam II:Exam II:
Exam III:Exam III:
All 6All 6--8PM, but no rooms assigned yet. Info Available on website.8PM, but no rooms assigned yet. Info Available on website.

Programming Assignment I: Due September 25Programming Assignment I: Due September 25
Distributed as handout and available onlineDistributed as handout and available online

Subscribe to the class email list: Subscribe to the class email list: icom4036-students

Functional Programming ImpactsFunctional Programming Impacts

Functional programming as a minority discipline in the field Functional programming as a minority discipline in the field
of programming languages nears a certain resemblance to of programming languages nears a certain resemblance to
socialism in its relation to conventional, capitalist economic socialism in its relation to conventional, capitalist economic
doctrine. Their proponents are often brilliant intellectuals doctrine. Their proponents are often brilliant intellectuals
perceived to be radical and rather unrealistic by the perceived to be radical and rather unrealistic by the
mainstream, but littlemainstream, but little--byby--little changes are made in little changes are made in
conventional languages and economics to incorporate conventional languages and economics to incorporate
features of the radical proposals.features of the radical proposals.

-- Morris [1982] “Real programming in functional languagesMorris [1982] “Real programming in functional languages

Functional Programming HighlightsFunctional Programming Highlights

Conventional Imperative Languages Motivated by von Conventional Imperative Languages Motivated by von
Neumann ArchitectureNeumann Architecture
Functional programming= New machanism for Functional programming= New machanism for
abstractionabstraction
Functional Composition = InterfacingFunctional Composition = Interfacing
Solutions as a series of function applicationSolutions as a series of function application
f(a), g(f(a)), h(g(f(a))),f(a), g(f(a)), h(g(f(a))),

Program is an notation or encoding for a valueProgram is an notation or encoding for a value
Computation proceeds by rewriting the program into Computation proceeds by rewriting the program into
that valuethat value
Sequencing of events not as importantSequencing of events not as important
In pure functional languages there is no notion of stateIn pure functional languages there is no notion of state

Functional Programming PhylosophyFunctional Programming Phylosophy

Symbolic computation / Experimental Symbolic computation / Experimental
programmingprogramming
Easy syntax / Easy to parse / Easy to modify. Easy syntax / Easy to parse / Easy to modify.
Programs as dataPrograms as data
HighHigh--Order functionsOrder functions
ReusabilityReusability
No side effects (Pure!)No side effects (Pure!)
Dynamic & implicit type systemsDynamic & implicit type systems
Garbage Collection (Implicit Automatic Storage Garbage Collection (Implicit Automatic Storage
management)management)

Garbage CollectionGarbage Collection

At a given point in the execution of a At a given point in the execution of a
program, a memory location is garbage if no program, a memory location is garbage if no
continued execution of the program from continued execution of the program from
this point can access the memory location. this point can access the memory location.
Garbage Collection: Detects unreachable Garbage Collection: Detects unreachable
objects during program execution & it is objects during program execution & it is
invoked when more memory is neededinvoked when more memory is needed
Decision made by runDecision made by run--time system, not by time system, not by
the program (Memory Management).the program (Memory Management).

What’s wrong with this picture?What’s wrong with this picture?

Theoretically, every imperative program can be Theoretically, every imperative program can be
written as a functional program. written as a functional program.

However, can we use functional programming However, can we use functional programming
for practical applications?for practical applications?

(Compilers, Graphical Users Interfaces, Network (Compilers, Graphical Users Interfaces, Network
Routers,)Routers,)

Eternal Debate: But, most complex software today is written
in imperative languages

LISP LISP

Lisp= List ProcessingLisp= List Processing
Implemented for processing symbolic informationImplemented for processing symbolic information
McCarthy: “Recursive functions of symbolic McCarthy: “Recursive functions of symbolic
expressions and their computation by machine” expressions and their computation by machine”
Communications of the ACM, 1960.Communications of the ACM, 1960.
1970’s: Scheme, Portable Standard Lisp1970’s: Scheme, Portable Standard Lisp
1984: Common Lisp1984: Common Lisp
1986: use of Lisp ad internal scripting languages for 1986: use of Lisp ad internal scripting languages for
GNU Emacs and AutoCAD.GNU Emacs and AutoCAD.

History (1)History (1)

Fortran Fortran

FLPL (Fortran List Processing Language)
No recursion and conditionals within
expressions.

Lisp (List processor)

History (2)History (2)

Lisp (List Processor, McCarthy 1960) Lisp (List Processor, McCarthy 1960)
* Higher order functions* Higher order functions
* conditional expressions* conditional expressions
* data/program duality* data/program duality
* scheme (dialect of Lisp, Steele & * scheme (dialect of Lisp, Steele &

Sussman 1975)Sussman 1975)

APL (Inverson 1962)APL (Inverson 1962)
* Array basic data type* Array basic data type
* Many array operators* Many array operators

History (3)History (3)

IFWIM (If You Know What I Mean, Landin 1966)IFWIM (If You Know What I Mean, Landin 1966)
* Infix notation* Infix notation
* equational declarative* equational declarative

ML (Meta Language ML (Meta Language –– Gordon, Milner, Appel, McQueen Gordon, Milner, Appel, McQueen
1970)1970)

* static, strong typed language* static, strong typed language
* machine assisted system for formal proofs* machine assisted system for formal proofs
* data abstraction* data abstraction
* Standard ML (1983)* Standard ML (1983)

History (4)History (4)

FP (Backus 1978)FP (Backus 1978)
* Lambda calculus* Lambda calculus
* implicit data flow specification* implicit data flow specification

SASL/KRC/Miranda (Turner 1979,1982,1985)SASL/KRC/Miranda (Turner 1979,1982,1985)
* math* math--like sintaxlike sintax

Scheme: A dialect of LISP Scheme: A dialect of LISP

READREAD--EVALEVAL--PRINT Loop (interpreter)PRINT Loop (interpreter)
Prefix NotationPrefix Notation
Fully ParenthesizedFully Parenthesized
(* (* (+ 3 5) ((* (* (+ 3 5) (-- 3 (/ 4 3))) (3 (/ 4 3))) (-- (* (+ 4 5) (+ 7 6)) 4))(* (+ 4 5) (+ 7 6)) 4))

(* (*(* (* (+ 3 5)(+ 3 5)
((-- 3 (/ 4 3)))3 (/ 4 3)))

((-- (* (+ 4 5)(* (+ 4 5)
(+ 7 6))(+ 7 6))

4))4))

Scheme (1)Scheme (1)

(define pi 3.14159) ; bind a variable to a value(define pi 3.14159) ; bind a variable to a value
pipi

pIpI
3.141593.14159

(* 5 7)(* 5 7)
3535

(+ 3 (* 7 4))(+ 3 (* 7 4))
31 31 ; parenthesized prefix notation; parenthesized prefix notation

Scheme (2)Scheme (2)

(define (square x) (*x x))(define (square x) (*x x))
squaresquare

(square 5)(square 5)
2525

((lambda (x) (*x x)) 5) ; unamed function((lambda (x) (*x x)) 5) ; unamed function
2525

The benefit of lambda notation is that a function value The benefit of lambda notation is that a function value
can appear within expressions, either as an operator can appear within expressions, either as an operator
or as an argument. or as an argument.

Scheme programs can construct functions dynamicallyScheme programs can construct functions dynamically

Scheme (3)Scheme (3)

(define square (x) (* x x)) (define square (x) (* x x))
(define square (lambda (x) (* x x)))(define square (lambda (x) (* x x)))
(define sum(define sum--ofof--squares (lambda (x y) squares (lambda (x y)

(+ (square x) (square y))))(+ (square x) (square y))))

NamedNamed procedures are so powerfulprocedures are so powerful because tbecause they allow us hey allow us
to hide details and solve theto hide details and solve the problem at a higher levelproblem at a higher level of of
abstraction.abstraction.

Scheme (4)Scheme (4)

(If P E1 E2) ; if P then E1 else E2(If P E1 E2) ; if P then E1 else E2
(cond (P1 E1) ; if P1 then E1 (cond (P1 E1) ; if P1 then E1

..........
(Pk Ek) ; else if Pk then Ek(Pk Ek) ; else if Pk then Ek
(else Ek+1)) ; else Ek+1(else Ek+1)) ; else Ek+1

(define (fact n)(define (fact n)
(if (equal? n 0)(if (equal? n 0)

11
(*n (fact ((*n (fact (-- n 1))))) n 1)))))

(null? ())(null? ())
#t#t
(define x ((It is great) to (see) you))(define x ((It is great) to (see) you))

xx
(car x)(car x)

(It is great)(It is great)
(cdr x)(cdr x)
(to (see) you)(to (see) you)

(car (car x))(car (car x))
It It

(cdr (car x))(cdr (car x))
(is great)(is great)

Scheme (5)Scheme (5)

(define (define aa (cons 1(cons 10 20))0 20))
(define b (cons 30 40))(define b (cons 30 40))
(define c (cons a b))(define c (cons a b))

Scheme (6)Scheme (6)

Devise a representation for staks and implementations for the Devise a representation for staks and implementations for the
functions:functions:
push (h, st) returns stack with h on toppush (h, st) returns stack with h on top
top (st) returns top element of stacktop (st) returns top element of stack
pop(st) returns stack with top element removedpop(st) returns stack with top element removed

Solution: Solution:
represent stack by a listrepresent stack by a list
push=conspush=cons
top=cartop=car
pop=cdrpop=cdr

Scheme (7)Scheme (7)

(define (lenght x)(define (lenght x)
(cond ((null? X) 0)(cond ((null? X) 0)

(else (+ 1 (lenght (cdr x))))))(else (+ 1 (lenght (cdr x))))))

(define (append x z)(define (append x z)
(cond ((null? X) z)(cond ((null? X) z)

(else (cons (car x) append (cdr x) z (else (cons (car x) append (cdr x) z
))))))))))

(append `(a b c) `(d))(append `(a b c) `(d))
(a b c d)(a b c d)

Scheme (8)Scheme (8)

Scheme: Binary Trees Scheme: Binary Trees

'(14 (7 () (12 () '(14 (7 () (12 () (())))))
(26 (20 (17 () ())(26 (20 (17 () ())

())())
(31 () ())))(31 () ())))

1414

7 267 26

12 20 3112 20 31

1717

Scheme : Binary TreeScheme : Binary Tree

(define empty(define empty--tree? (lambda (tree? (lambda (bstbst) (null?) (null? bstbst))))))

(define node (lambda ((define node (lambda (bstbst) (car) (car bstbst))))))

(define left(define left--subtreesubtree (lambda ((lambda (bstbst) (car () (car (cdrcdr bstbst))))))))

(define right(define right--subtreesubtree (lambda ((lambda (bstbst) (car () (car (cdrcdr (cdr(cdr bstbst))))))))))

Scheme: Binary Search TreeScheme: Binary Search Tree
define pathdefine path
(lambda (n (lambda (n bstbst))
(if (empty(if (empty--tree? tree? bstbst))

(error "number not found!") ;; didn'(error "number not found!") ;; didn't find itt find it
(if (< n (node (if (< n (node bstbst))))

(cons 'L (path n (left(cons 'L (path n (left--subtreesubtree bstbst))) ;; in the left))) ;; in the left subtreesubtree
(if (> n (node (if (> n (node bstbst))))

(cons 'R (path n (right(cons 'R (path n (right--subtreesubtree bstbst))) ;; in the right))) ;; in the right subtreesubtree
'() ;; n is '() ;; n is here, quithere, quit
))

))
))

))))

Scheme: Set OperationsScheme: Set Operations

(define ((define (mymembermymember atmatm lislis))
((condcond

((null? ((null? lislis) #f)) #f)
((equal? ((equal? atmatm (car (car lislis)) #t))) #t)
(else ((else (mymembermymember atmatm ((cdrcdr lislis))))))

))
))

((mymembermymember 4 (list 1 2 3 4))4 (list 1 2 3 4))
truetrue

Scheme: DifferenceScheme: Difference

(define ((define (setdiffsetdiff lis1 lis2)lis1 lis2)
((condcond

((null? lis1) '())((null? lis1) '())
((null? lis2) lis1)((null? lis2) lis1)
((((mymembermymember (car lis1) lis2)(car lis1) lis2)

((setdiffsetdiff ((cdrcdr lis1) lis2))lis1) lis2))
(else (cons (car lis1) ((else (cons (car lis1) (setdiffsetdiff ((cdrcdr lis1) lis2)))lis1) lis2)))

))
))

Scheme: IntersectionScheme: Intersection

(define (intersection lis1 lis2)(define (intersection lis1 lis2)
((condcond

((null? lis1) '())((null? lis1) '())
((null? lis2) '())((null? lis2) '())
((((mymembermymember (car lis1) lis2)(car lis1) lis2)

(cons (car lis1)(cons (car lis1)
(intersection ((intersection (cdrcdr lis1) lis2)))lis1) lis2)))

(else (intersection ((else (intersection (cdrcdr lis1) lis2))lis1) lis2))
))

))

Scheme: UnionScheme: Union

(define (union lis1 lis2)(define (union lis1 lis2)
((condcond

((null? lis1) lis2)((null? lis1) lis2)
((null? lis2) lis1)((null? lis2) lis1)
((((mymembermymember (car lis1) lis2)(car lis1) lis2)

(cons (car lis1)(cons (car lis1)
(union ((union (cdrcdr lis1)lis1)

((setdiffsetdiff lis2 (cons (car lis1) '())))))lis2 (cons (car lis1) '())))))
(else (cons (car lis1) (union ((else (cons (car lis1) (union (cdrcdr lis1) lis2)))lis1) lis2)))

))
))

Remark 1Remark 1

In Functional Languages, you can concern In Functional Languages, you can concern
yourself with the higher level details of what yourself with the higher level details of what
you want accomplished, and not with the lower you want accomplished, and not with the lower
details of how it is accomplished. In turn, this details of how it is accomplished. In turn, this
reduces both development and maintenance reduces both development and maintenance
costcost

Remark 2Remark 2

Digital circuits are made up of a number of Digital circuits are made up of a number of
functional units connected by wires. Thus, functional units connected by wires. Thus,
functional composition is a direct model of this functional composition is a direct model of this
application. This connection has caught the application. This connection has caught the
interest of fabricants and functional languages interest of fabricants and functional languages
are now being used to design and model chipsare now being used to design and model chips

Example: Products form Example: Products form Cadence Design Systems,Cadence Design Systems, a a
leading vendor of electronic design automation tools for IC leading vendor of electronic design automation tools for IC
design, are scripted with SKILL (a proprietary dialect of design, are scripted with SKILL (a proprietary dialect of
LISP)LISP)

Remark 3Remark 3

Common Language Runtime (CLR) offers the Common Language Runtime (CLR) offers the
possibility for multipossibility for multi--language solutions to language solutions to
problems within which various parts of the problems within which various parts of the
problem are best solved with different problem are best solved with different
languages, at the same time offering some layer languages, at the same time offering some layer
of transparent interof transparent inter--language communication language communication
among solution components.among solution components.

Example: Example: MondrianMondrian ((http://www.mondrianhttp://www.mondrian--script.orgscript.org) is a) is a
purely functional language specifically designed to leverage purely functional language specifically designed to leverage
the possibilities of the .NET framework. the possibilities of the .NET framework. MondrianMondrian is is
designed to designed to interworkinterwork with objectwith object--oriented languages (C++, oriented languages (C++,
C#)C#)

Remark 4Remark 4

Functional languages, in particular Scheme, Functional languages, in particular Scheme,
have a significant impact on applications areas have a significant impact on applications areas
such assuch as

Artificial Intelligence (Expert systems, planning, etc)Artificial Intelligence (Expert systems, planning, etc)
Simulation and modelingSimulation and modeling
Applications programming (CAD, Applications programming (CAD, MathematicaMathematica))
Rapid prototypingRapid prototyping
Extended languages(Extended languages(webserverswebservers, image processing), image processing)

Remark 5Remark 5

If all you have is a hammer, then everything If all you have is a hammer, then everything
looks like a nail. looks like a nail.

ENDEND

AdministrativaAdministrativa

Chapters 1, 2, 3, 4, & 10Chapters 1, 2, 3, 4, & 10
Papers on linePapers on line
More useful links (Scheme, Ethics)More useful links (Scheme, Ethics)

AdministrativaAdministrativa

Papers onPapers on--lineline
Why functional programming matters?Why functional programming matters?

Why this study of Programming
Languages
Why this study of Programming
Languages

Understanding all the features (constructs) of Understanding all the features (constructs) of
programming languages.programming languages.
Increase your programming vocabulary.Increase your programming vocabulary.
Make it easier to learn new programs.Make it easier to learn new programs.
Learn to design your own “little languages”.Learn to design your own “little languages”.

Evaluation CriteriaEvaluation Criteria
Readability (make maintenance easy)Readability (make maintenance easy)
WriteabilityWriteability (make programming easy)(make programming easy)
Reliability (make debugging easy)Reliability (make debugging easy)
Cost (learning, coding, compilation, runtime, Cost (learning, coding, compilation, runtime,
maintenance, portability)maintenance, portability)

High High writeabilitywriteability high learning costhigh learning cost
High reliability High reliability low low writeabilitywriteability

Important issuesImportant issues
Hardware architectureHardware architecture
Programming Programming methologymethology
Importance of the application domainImportance of the application domain
Strong promoterStrong promoter
Easy access to high quality compilers and toolsEasy access to high quality compilers and tools
standardizationstandardization

