Bottom-Up Parsing
 LR Parsing. Parser Generators.

Lecture 6

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
- And just as efficient
- Builds on ideas in top-down parsing
- Preferred method in practice
- Also called LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation!

An Introductory Example

- LR parsers don't need left-factored grammars and can also handle left-recursive grammars
- Consider the following grammar:

$$
E \rightarrow E+(E) \mid \text { int }
$$

- Why is this not $\operatorname{LL}(1)$?
- Consider the string: int + (int) + (int)

The Idea

- LR parsing reduces a string to the start symbol by inverting productions:
str $=$ input string of terminals repeat
- Identify β in str such that $A \rightarrow \beta$ is a production (i.e., str $=\alpha \beta \gamma$)
- Replace β by A in str (i.e., str becomes $\alpha A \gamma$) until str $=S$

A Bottom-up Parse in Detail (1)

int + (int) + (int)

A Bottom-up Parse in Detail (2)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E (int) + (int) }
\end{aligned}
$$

 E
 int $+(\operatorname{int})+(\operatorname{int})$

A Bottom-up Parse in Detail (3)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) + (int) } \\
& E+(E)+(i n t)
\end{aligned}
$$

A Bottom-up Parse in Detail (4)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) }+ \text { (int) } \\
& E+(E)+\text { (int) } \\
& E+(\text { int })
\end{aligned}
$$

A Bottom-up Parse in Detail (5)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) }+ \text { (int) } \\
& \text { E + (E) }+ \text { int }) \\
& \text { E + (int) } \\
& \text { E + (E) }
\end{aligned}
$$

A Bottom-up Parse in Detail (6)

$$
\left\lvert\, \begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E }+ \text { (int })+(\text { int }) \\
& E+(E)+(\text { int }) \\
& E+(\text { int }) \\
& E+(E) \\
& E
\end{aligned}\right.
$$

A rightmost derivation in reverse

Important Fact \#1

Important Fact \#1 about bottom-up parsing:

An $\angle R$ parser traces a rightmost derivation in reverse

Where Do Reductions Happen

Important Fact \#1 has an interesting consequence:

- Let $\alpha \beta \gamma$ be a step of a bottom-up parse
- Assume the next reduction is by $A \rightarrow \beta$
- Then γ is a string of terminals!

Why? Because $\alpha A \gamma \rightarrow \alpha \beta \gamma$ is a step in a rightmost derivation

Notation

- Idea: Split string into two substrings
- Right substring (a string of terminals) is as yet unexamined by parser
- Left substring has terminals and non-terminals
- The dividing point is marked by a I
- The I is not part of the string
- Initially, all input is unexamined: $\mid x_{1} x_{2} \ldots x_{n}$

Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Shift

Shift: Move I one place to the right

- Shifts a terminal to the left string

$$
E+(\mathrm{int}) \Rightarrow E+(\mathrm{int} \mid)
$$

Reduce

Reduce: Apply an inverse production at the right end of the left string

- If $E \rightarrow E+(E)$ is a production, then

$$
E+(\underline{E}+(E) \mid) \Rightarrow E+(\underline{E} \mid)
$$

Shift-Reduce Example

I int + (int) + (int)\$ shift
int + (int) + (int)
I

Shift-Reduce Example

I int + (int) + (int)\$ shift int I + (int) + (int)\$ red. E
\rightarrow int
int + (int) + (int)

Shift-Reduce Example

I int + (int) + (int)\$ shift int I + (int) + (int)\$ red. E
\rightarrow int
EI + (int) + (int)\$ shift 3 times

Shift-Reduce Example

I int + (int) + (int)\$ shift
int I + (int) + (int)\$ red. E
\rightarrow int
EI + (int) + (int)\$ shift
3 times
$E+(i n t$ I $)+(i n t) \$ \quad$ red. E
\rightarrow int

Shift-Reduce Example

I int + (int) + (int)\$ shift
int I + (int) + (int)\$ red. E
\rightarrow int
EI + (int) + (int)\$ shift
3 times
$E+($ int I $)+($ int $) \$ \quad$ red. E \rightarrow int
$E+(E$ I $)+($ int $) \$$ shift

Shift-Reduce Example

I int + (int) + (int)\$ shift
int I + (int) + (int)\$ red. E
\rightarrow int
EI + (int) + (int)\$ shift
3 times
$E+($ int I $)+($ int $) \$ \quad$ red. E
\rightarrow int
$E+(E I)+(i n t) \$$ shift
$E+(E) I+($ int $) \$$
red. Eint + (int) + (int)
$\rightarrow E+(E)$

Shift-Reduce Example

I int + (int) + (int)\$ shift
int I + (int) + (int)\$ red. E
\rightarrow int
EI + (int) + (int)\$ shift 3 times
$E+($ int I $)+($ int $) \$ \quad$ red. E \rightarrow int
$E+(E I)+(i n t) \$$ shift
$E+(E) I+($ int $) \$$
red. Eint + (int) + (int)
$\rightarrow E+(E)$
EI + (int)\$
shift 3

Shift-Reduce Example

। int + (int) + (int)\$ shift int I + (int) + (int)\$ red. E
\rightarrow int
El + (int) + (int)\$ shift 3 times
$E+(i n t$ I $)+(i n t) \$$ red. E \rightarrow int
$E+(E$ I $)+($ int $) \$$ shift
$E+(E) I+$ (int $) \$$ red. E int $+($ int $)+($ int
$\rightarrow E+(E)$
EI + (int)\$
shift 3

Shift-Reduce Example

। int + (int) + (int)\$ shift int I + (int) + (int)\$ red. E
\rightarrow int
El + (int) + (int)\$ shift 3 times
$E+(i n t$ I $)+(i n t) \$$ red. E \rightarrow int
$E+(E$ I $)+($ int $) \$$ shift
$E+(E) I+($ int $) \$ \quad$ red. E int $+(\operatorname{int})+(\mathrm{int}$
$\rightarrow E+(E)$
EI + (int)\$
shift 3

Shift-Reduce Example

। int + (int) + (int)\$ shift int I + (int) + (int)\$ red. E
\rightarrow int
El + (int) + (int)\$ shift 3 times
$E+(i n t$ I $)+(i n t) \$$ red. E \rightarrow int
$E+(E$ I $)+($ int $) \$$ shift
$E+(E) I+($ int $) \$$ red. E int $+(\operatorname{int})+(\operatorname{int})$
$\rightarrow E+(E)$
EI + (int)\$
shift 3

Shift-Reduce Example

I int + (int) + (int)\$ shift int I + (int) + (int)\$ red. E \rightarrow int
El + (int) + (int)\$ shift 3 times
$E+(i n t$ I $)+(i n t) \$$ red. E \rightarrow int
$E+(E$ I $)+($ int $) \$$ shift
$E+(E) I+$ (int) $\$$ red. E
$\rightarrow E+(E)$
EI + (int)\$
shift 3

The Stack

- Left string can be implemented by a stack
- Top of the stack is the 1
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a nonterminal on the stack (production Ihs)

Key Issue: When to Shift or Reduce?

- Decide based on the left string (the stack)
- Idea: use a finite automaton (DFA) to decide when to shift or reduce
- The DFA input is the stack
- The language consists of terminals and non-terminals
- We run the DFA on the stack and we examine the resulting state X and the token tok after ।
- If X has a transition labeled tok then shift
- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce

LR(1) Parsing. An Example

Representing the DFA

- Parsers represent the DFA as a 2D table
- Recall table-driven lexical analysis
- Lines correspond to DFA states
- Columns correspond to terminals and nonterminals
- Typically columns are split into:
- Those for terminals: action table
- Those for non-terminals: goto table

Representing the DFA. Example

- The table for a fragment of our DFA:

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
- This is wasteful, since most of the work is repeated
- Remember for each stack element on which state it brings the DFA
- LR parser maintains a stack
$\left\langle\right.$ sym $_{1}$ state $\left._{1}\right\rangle \ldots\left\langle\right.$ sym $_{n}$ state $\left._{n}\right\rangle$
state $_{k}$ is the final state of the DFA on $\operatorname{sym}_{1} \ldots$ sym $_{k}$

The LR Parsing Algorithm

Let $I=w \$$ be initial input
Let $\mathrm{j}=0$
Let DFA state 0 be the start state
Let stack $=\langle$ dummy, 0\rangle
repeat
case action[top_state(stack), I[j]] of
shift k: push $\langle I[j++], k\rangle$
reduce $X \rightarrow \alpha$:
pop $|\alpha|$ pairs,
push $\langle X$, Goto[top_state(stack), X]〉
accept: halt normally
error: halt and report error

LR Parsing Notes

- Can be used to parse more grammars than LL
- Most programming languages grammars are LR
- Can be described as a simple table
- There are tools for building the table
- How is the table constructed?

Key Issue: How is the DFA Constructed?

- The stack describes the context of the parse
- What non-terminal we are looking for
- What production rhs we are looking for
- What we have seen so far from the rhs
- Each DFA state describes several such contexts
- E.g., when we are looking for non-terminal E, we might be looking either for an int or a $E+(E)$ rhs

LR(1) Items

- An LR(1) item is a pair:

$$
X \rightarrow \alpha \cdot \beta, a
$$

$-X \rightarrow \alpha . \beta$ is a production

- α is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
- $[X \rightarrow \alpha . \beta, a]$ describes a context of the parser
- We are trying to find an X followed by an a, and
- We have a already on top of the stack
- Thus we need to see next a prefix derived from βa

Note

- The symbol I was used before to separate the stack from the rest of input
- $\alpha \mid \gamma$, where α is the stack and γ is the remaining string of terminals
- In items . is used to mark a prefix of a production rhs:

$$
X \rightarrow \alpha . \beta, a
$$

- Here β might contain non-terminals as well
- In both case the stack is on the left

Convention

- We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$
- Where E is the old start symbol
- The initial parsing context contains:

$$
S \rightarrow . E, \$
$$

- Trying to find an S as a string derived from $E \$$
- The stack is empty

LR(1) Items (Cont.)

- In context containing

$$
E \rightarrow E+(E),+
$$

- If (follows then we can perform a shift to context containing

$$
E \rightarrow E+(. E),+
$$

- In context containing

$$
E \rightarrow E+(E) .,+
$$

- We can perform a reduction with $E \rightarrow E+(E)$
- But only if a + follows

LR(1) Items (Cont.)

- Consider the item

$$
E \rightarrow E+(. E),+
$$

- We expect a string derived from E) +
- There are two productions for E

$$
E \rightarrow \text { int and } E \rightarrow E+(E)
$$

- We describe this by extending the context with two more items:

$$
\begin{aligned}
& E \rightarrow \text { int, }) \\
& E \rightarrow . E+(E),)
\end{aligned}
$$

The Closure Operation

- The operation of extending the context with items is called the closure operation

Closure (Items) $=$
repeat
for each $[X \rightarrow \alpha . Y \beta, a]$ in Items
for each production $Y \rightarrow \gamma$
for each $b \in \operatorname{First}(\beta a)$ add $[\mathrm{Y} \rightarrow . \gamma, \mathrm{b}]$ to Items
until Items is unchanged

Constructing the Parsing DFA (1)

- Construct the start context: Closure(\{s \rightarrow.E, \$\})

$$
\begin{aligned}
& S \rightarrow . E, \$ \\
& E \rightarrow . E+(E), \$ \\
& E \rightarrow . \text { int,\$ } \\
& E \rightarrow . E+(E),+ \\
& E \rightarrow . \text { int, }+
\end{aligned}
$$

- We abbreviate as:

$$
\begin{aligned}
& S \rightarrow . E, \$ \\
& E \rightarrow . E+(E), \$ /+ \\
& E \rightarrow . \text { int, \$/+ }
\end{aligned}
$$

Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items
- The start state contains [S $\rightarrow . E, \$]$
- A state that contains [X \rightarrow. . b] is labeled with "reduce with $X \rightarrow \alpha$ on b "
- And now the transitions ...

The DFA Transitions

- A state "State" that contains [X $\rightarrow \alpha . y \beta$, b] has a transition labeled y to a state that contains the items "Transition(State, y)"
- y can be a terminal or a non-terminal

Transition(State, y)
Items Ã \varnothing
for each $[X \rightarrow \alpha . y \beta, b] 2$ State add $[X \rightarrow \alpha y . \beta, b]$ to Items return Closure (Items)

Constructing the Parsing DFA. Example.

LR Parsing Tables. Notes

- Parsing tables (i.e. the DFA) can be constructed automatically for a CFG
- But we still need to understand the construction to work with parser generators
- E.g., they report errors in terms of sets of items
- What kind of errors can we expect?

Shift/Reduce Conflicts

- If a DFA state contains both

$$
[\mathrm{X} \rightarrow \alpha . a \beta, b] \text { and }[\mathrm{Y} \rightarrow \gamma, \mathrm{a}]
$$

- Then on input "a" we could either
- Shift into state [$X \rightarrow \alpha a . \beta$, b], or
- Reduce with $Y \rightarrow \gamma$
- This is called a shift-reduce conflict

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar
- Classic example: the dangling else

$$
S \rightarrow \text { if } E \text { then } S \mid \text { if } E \text { then } S \text { else } S \mid O T H E R
$$

- Will have DFA state containing
[$S \rightarrow$ if E then S., else]
[$S \rightarrow$ if E then S. else S, x]
- If else follows then we can shift or reduce
- Default (bison, CUP, etc.) is to shift
- Default behavior is as needed in this case

More Shift/Reduce Conflicts

- Consider the ambiguous grammar

$$
E \rightarrow E+E|E * E| \text { int }
$$

- We will have the states containing

$$
\begin{array}{ll}
{\left[E \rightarrow E^{*} \cdot E_{1}+\right]} \\
{[E \rightarrow . E+E,+]}
\end{array} \Rightarrow E \quad\left[E \rightarrow E^{*} E_{1,}+\right]
$$

- Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Recall solution: declare the precedence of *

More Shift/Reduce Conflicts

- In bison declare precedence and associativity:

$$
\begin{aligned}
& \% \text { left + } \\
& \% \text { left * }
\end{aligned}
$$

- Precedence of a rule $=$ that of its last terminal
- See bison manual for ways to override this default
- Resolve shift/reduce conflict with a shift if:
- no precedence declared for either rule or terminal
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

Using Precedence to Solve S/R Conflicts

- Back to our example:

$$
\begin{array}{ll}
{\left[E \rightarrow E^{*} \cdot E_{1}+\right]} \\
{\left[E \rightarrow . E+E_{1}+\right] \Rightarrow E} & {\left[E \rightarrow E^{*} E_{1,}+\right]} \\
{\left[E \rightarrow E .+E_{1}+\right]}
\end{array}
$$

- Will choose reduce because precedence of rule $E \rightarrow E$ * E is higher than of terminal +

Using Precedence to Solve S/R Conflicts

- Same grammar as before

$$
E \rightarrow E+E|E * E| \text { int }
$$

- We will also have the states

$$
\begin{aligned}
& {\left[E \rightarrow E+E_{1}+\right]} \\
& {\left[E \rightarrow . E+E_{1}+\right] \Rightarrow E \quad\left[E \rightarrow E+E_{1,+}+\right]} \\
& {\left[E \rightarrow E .+E_{1}+\right]}
\end{aligned}
$$

- Now we also have a shift/reduce on input +
- We choose reduce because $E \rightarrow E+E$ and + have the same precedence and + is left-

Using Precedence to Solve S/R Conflicts

- Back to our dangling else example

$$
\begin{array}{ll}
{[S \rightarrow \text { if } E \text { then } S .,} & \text { else }] \\
{[S \rightarrow \text { if } E \text { then } S . \text { else } S,} & x]
\end{array}
$$

- Can eliminate conflict by declaring else with higher precedence than then
- Or just rely on the default shift action
- But this starts to look like "hacking the parser"
- Best to avoid overuse of precedence declarations or you'll end with unexpected parse trees

Reduce/Reduce Conflicts

- If a DFA state contains both

- Then on input " a " we don't know which production to reduce
- This is called a reduce/reduce conflict

Reduce/Reduce Conflicts

- Usually due to gross ambiguity in the grammar
- Example: a sequence of identifiers

$$
S \rightarrow \varepsilon \mid \text { id } \mid \text { id } S
$$

- There are two parse trees for the string id

$$
\begin{aligned}
& S \rightarrow \mathrm{id} \\
& S \rightarrow \mathrm{id} S \rightarrow \mathrm{id}
\end{aligned}
$$

- How does this confuse the parser?

More on Reduce/Reduce Conflicts

- Consider the states
[S \rightarrow id ., \$]

$$
\left[S^{\prime} \rightarrow . S, \quad \$\right] \quad[S \rightarrow \text { id. } S,
$$

\$]

$$
[S \rightarrow ., \quad \$] \quad \Rightarrow \text { id } \quad[S \rightarrow .
$$ \$]

$$
[S \rightarrow . i d, \quad \$]
$$

$$
[S \rightarrow . i d,
$$ \$]

$$
[S \rightarrow \text {. id } S, \$]
$$

$$
[S \rightarrow \text {. id } S,
$$

- Reduce/reduce conflict on input \$

Using Parser Generators

- Parser generators construct the parsing DFA given a CFG
- Use precedence declarations and default conventions to resolve conflicts
- The parser algorithm is the same for all grammars (and is provided as a library function)
- But most parser generators do not construct the DFA as described before
- Because the LR(1) parsing DFA has 1000s of states even for a simple language

LR(1) Parsing Tables are Big

- But many states are similar, e.g.

$E \rightarrow$ int
on $\$,+$ and

$\mathrm{E} \rightarrow$ int
on $)$, +
- Idea: merge the DFA states whose items differ only in the lookahead tokens
- We say that such states have the same core
- We obtain

$$
E \rightarrow \text { int., \$/+/) } \begin{array}{ll}
E \rightarrow \text { int } \\
\text { on } \$,+, \text {, }
\end{array}
$$

The Core of a Set of LR Items

- Definition: The core of a set of LR items is the set of first components
- Without the lookahead terminals
- Example: the core of

$$
\{[\mathrm{X} \rightarrow \alpha . \beta, \mathrm{b}],[\mathrm{Y} \rightarrow \gamma . \delta, \mathrm{d}]\}
$$

is

$$
\{X \rightarrow \alpha . \beta, Y \rightarrow \gamma . \delta\}
$$

LALR States

- Consider for example the LR(1) states

$$
\begin{aligned}
& \{[X \rightarrow \alpha ., a],[Y \rightarrow \beta ., c]\} \\
& \{[X \rightarrow \alpha ., b],[Y \rightarrow \beta ., d]\}
\end{aligned}
$$

- They have the same core and can be merged
- And the merged state contains:

$$
\{[X \rightarrow \alpha ., a / b],[Y \rightarrow \beta ., c / d]\}
$$

- These are called LALR(1) states
- Stands for LookAhead LR
- Typically 10 times fewer LALR(1) states than LR(1)

A LALR(1) DFA

- Repeat until all states have distinct core
- Choose two distinct states with same core
- Merge the states by creating a new one with the union of all the items
- Point edges from predecessors to new state
- New state points to all the previous successors

Conversion LR(1) to LALR(1). Example.

The LALR Parser Can Have Conflicts

- Consider for example the LR(1) states

$$
\begin{aligned}
& \{[X \rightarrow \alpha ., a],[Y \rightarrow \beta ., b]\} \\
& \{[X \rightarrow \alpha ., b],[Y \rightarrow \beta ., a]\}
\end{aligned}
$$

- And the merged LALR(1) state

$$
\{[X \rightarrow \alpha ., a / b],[Y \rightarrow \beta ., a / b]\}
$$

- Has a new reduce-reduce conflict
- In practice such cases are rare

LALR vs. LR Parsing

- LALR languages are not natural
- They are an efficiency hack on LR languages
- Any reasonable programming language has a LALR(1) grammar
- LALR(1) has become a standard for programming languages and for parser generators

A Hierarchy of Grammar Classes

From Andrew Appel, "Modern Compiler Implementation in Java"

Notes on Parsing

- Parsing
- A solid foundation: context-free grammars
- A simple parser: LL(1)
- A more powerful parser: $\operatorname{LR(1)}$
- An efficiency hack: LALR(1)
- LALR(1) parser generators
- Now we move on to semantic analysis

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts
 Due to LALR Conversion (from the bison manual)

Strange Reduce/Reduce Conflicts

- Consider the grammar

$$
\begin{array}{ll}
S \rightarrow P R, & N L \rightarrow N \mid N, \\
P \rightarrow T \mid N L: T & R \rightarrow T \mid N: T \\
N \rightarrow i d & T \rightarrow \text { id }
\end{array}
$$

- P - parameters specification
- R - result specification
- N - a parameter or result name
- T - a type name
- NL - a list of names

Strange Reduce/Reduce Conflicts

- In P an id is a
- N when followed by, or:
- T when followed by id
- In R an id is a
- N when followed by:
- T when followed by ,
- This is an LR(1) grammar.
- But it is not LALR(1). Why?
- For obscure reasons

A Few LR(1) States

What Happened?

- Two distinct states were confused because they have the same core
- Fix: add dummy productions to distinguish the two confused states
- E.g., add
$R \rightarrow$ id bogus
- bogus is a terminal not used by the lexer
- This production will never be used during parsing
- But it distinguishes R from P

A Few LR(1) States After Fix

