
ICOM 4036: PROGRAMMING
LANGUAGES

ICOM 4036: PROGRAMMING
LANGUAGES

Lecture Lecture 66
Functional ProgrammingFunctional Programming

The Case of SchemeThe Case of Scheme

11/15/200511/15/2005

Required ReadingsRequired Readings

TexbookTexbook (Scott PLP)(Scott PLP)
Chapter 11 Section 2: Functional ProgrammingChapter 11 Section 2: Functional Programming

Scheme Language DescriptionScheme Language Description
Revised Report on the Algorithmic Language SchemeRevised Report on the Algorithmic Language Scheme
(available at the course website in Postscript format)(available at the course website in Postscript format)

At least one exam question will cover these readings

AdministriviaAdministrivia

Exam III DateExam III Date
Tuesday November 22Tuesday November 22

Functional Programming ImpactsFunctional Programming Impacts

Functional programming as a minority discipline in the field Functional programming as a minority discipline in the field
of programming languages nears a certain resemblance to of programming languages nears a certain resemblance to
socialism in its relation to conventional, capitalist economic socialism in its relation to conventional, capitalist economic
doctrine. Their proponents are often brilliant intellectuals doctrine. Their proponents are often brilliant intellectuals
perceived to be radical and rather unrealistic by the perceived to be radical and rather unrealistic by the
mainstream, but littlemainstream, but little--byby--little changes are made in little changes are made in
conventional languages and economics to incorporate conventional languages and economics to incorporate
features of the radical proposals.features of the radical proposals.

-- Morris [1982] Morris [1982] ““Real programming in functional languagesReal programming in functional languages

Functional Programming HighlightsFunctional Programming Highlights

Conventional Imperative Languages Motivated by von Conventional Imperative Languages Motivated by von
Neumann ArchitectureNeumann Architecture
Functional programming= New machanism for Functional programming= New machanism for
abstractionabstraction
Functional Composition = InterfacingFunctional Composition = Interfacing
Solutions as a series of function applicationSolutions as a series of function application
f(a), g(f(a)), h(g(f(a))),f(a), g(f(a)), h(g(f(a))),

Program is an notation or encoding for Program is an notation or encoding for a valuea value
Computation proceeds by rewriting the program into Computation proceeds by rewriting the program into
that valuethat value
Sequencing of events not as importantSequencing of events not as important
In pure functional languages there is no notion of stateIn pure functional languages there is no notion of state

Functional Programming PhylosophyFunctional Programming Phylosophy

Symbolic computation / Experimental Symbolic computation / Experimental
programmingprogramming
Easy syntax / Easy to parse / Easy to modify. Easy syntax / Easy to parse / Easy to modify.
Programs as dataPrograms as data
HighHigh--Order functionsOrder functions
ReusabilityReusability
No side effects (Pure!)No side effects (Pure!)
Dynamic & implicit type systemsDynamic & implicit type systems
Garbage Collection (Implicit Automatic Storage Garbage Collection (Implicit Automatic Storage
management)management)

Garbage CollectionGarbage Collection

At a given point in the execution of a At a given point in the execution of a
program, a memory location is garbage if no program, a memory location is garbage if no
continued execution of the program from continued execution of the program from
this point can access the memory location. this point can access the memory location.
Garbage Collection: Detects unreachable Garbage Collection: Detects unreachable
objects during program execution & it is objects during program execution & it is
invoked when more memory is neededinvoked when more memory is needed
Decision made by runDecision made by run--time system, not by time system, not by
the program (Memory Management).the program (Memory Management).

What’s wrong with this picture?What’s wrong with this picture?

Theoretically, every imperative program can be Theoretically, every imperative program can be
written as a functional program. written as a functional program.

However, can we use functional programming However, can we use functional programming
for practical applications?for practical applications?

(Compilers, Graphical Users Interfaces, Network (Compilers, Graphical Users Interfaces, Network
Routers,)Routers,)

Eternal Debate: But, most complex software today is written
in imperative languages

LISP LISP

Lisp= List ProcessingLisp= List Processing
Implemented for processing symbolic informationImplemented for processing symbolic information
McCarthy: McCarthy: ““Recursive functions of symbolic Recursive functions of symbolic
expressions and their computation by machineexpressions and their computation by machine””
Communications of the ACM, 1960.Communications of the ACM, 1960.
19701970’’s: Scheme, Portable Standard Lisps: Scheme, Portable Standard Lisp
1984: Common Lisp1984: Common Lisp
1986: use of Lisp ad internal scripting languages for 1986: use of Lisp ad internal scripting languages for
GNU Emacs and AutoCAD.GNU Emacs and AutoCAD.

History (1)History (1)

Fortran Fortran

FLPL (Fortran List Processing Language)
No recursion and conditionals within
expressions.

Lisp (List processor)

History (2)History (2)

Lisp (List Processor, McCarthy 1960) Lisp (List Processor, McCarthy 1960)
* Higher order functions* Higher order functions
* conditional expressions* conditional expressions
* data/program duality* data/program duality
* scheme (dialect of Lisp, Steele & * scheme (dialect of Lisp, Steele &

Sussman 1975)Sussman 1975)

APL (Inverson 1962)APL (Inverson 1962)
* Array basic data type* Array basic data type
* Many array operators* Many array operators

History (3)History (3)

IFWIM (If You Know What I Mean, Landin 1966)IFWIM (If You Know What I Mean, Landin 1966)
* Infix notation* Infix notation
* equational declarative* equational declarative

ML (Meta Language ML (Meta Language –– Gordon, Milner, Appel, McQueen Gordon, Milner, Appel, McQueen
1970)1970)

* static, strong typed language* static, strong typed language
* machine assisted system for formal proofs* machine assisted system for formal proofs
* data abstraction* data abstraction
* Standard ML (1983)* Standard ML (1983)

History (4)History (4)

FP (Backus 1978)FP (Backus 1978)
* Lambda calculus* Lambda calculus
* implicit data flow specification* implicit data flow specification

SASL/KRC/Miranda (Turner 1979,1982,1985)SASL/KRC/Miranda (Turner 1979,1982,1985)
* math* math--like sintaxlike sintax

Scheme: A dialect of LISP Scheme: A dialect of LISP

READREAD--EVALEVAL--PRINT Loop (interpreter)PRINT Loop (interpreter)
Prefix NotationPrefix Notation
Fully ParenthesizedFully Parenthesized
(* (* (+ 3 5) ((* (* (+ 3 5) (-- 3 (/ 4 3))) (3 (/ 4 3))) (-- (* (+ 4 5) (+ 7 6)) 4))(* (+ 4 5) (+ 7 6)) 4))

(* (*(* (* (+ 3 5)(+ 3 5)
((-- 3 (/ 4 3)))3 (/ 4 3)))

((-- (* (+ 4 5)(* (+ 4 5)
(+ 7 6))(+ 7 6))

4))4))

A scheme expression results from a pre-order traversal of an expression syntax tree

Scheme Definitions and ExpressionsScheme Definitions and Expressions

(define pi 3.14159) ; bind a variable to a value(define pi 3.14159) ; bind a variable to a value
pipi

pIpI
3.141593.14159

(* 5 7)(* 5 7)
3535

(+ 3 (* 7 4))(+ 3 (* 7 4))
31 31 ; parenthesized prefix notation; parenthesized prefix notation

Scheme FunctionsScheme Functions

(define (square x) (*x x))(define (square x) (*x x))
squaresquare

(square 5)(square 5)
2525

((lambda (x) (*x x)) 5) ; unamed function((lambda (x) (*x x)) 5) ; unamed function
2525

The benefit of lambda notation is that a function value The benefit of lambda notation is that a function value
can appear within expressions, either as an operator can appear within expressions, either as an operator
or as an argument. or as an argument.

Scheme programs can construct functions dynamicallyScheme programs can construct functions dynamically

Functions that Call other FunctionsFunctions that Call other Functions

(define square (x) (* x x)) (define square (x) (* x x))
(define square (lambda (x) (* x x)))(define square (lambda (x) (* x x)))
(define sum(define sum--ofof--squares (lambda (x y) squares (lambda (x y)

(+ (square x) (square y))))(+ (square x) (square y))))

NamedNamed procedures are so powerfulprocedures are so powerful because tbecause they allow us hey allow us
to hide details and solve theto hide details and solve the problem at a higher levelproblem at a higher level of of
abstraction.abstraction.

Scheme Conditional ExpressionsScheme Conditional Expressions

(If P E1 E2) ; if P then E1 else E2(If P E1 E2) ; if P then E1 else E2
(cond (P1 E1) ; if P1 then E1 (cond (P1 E1) ; if P1 then E1

..........
(Pk Ek) ; else if Pk then Ek(Pk Ek) ; else if Pk then Ek
(else Ek+1)) ; else Ek+1(else Ek+1)) ; else Ek+1

(define (fact n)(define (fact n)
(if (equal? n 0)(if (equal? n 0)

11
(*n (fact ((*n (fact (-- n 1))))) n 1)))))

Blackboard ExercisesBlackboard Exercises

FibonacciFibonacci
GCDGCD

(null? ())(null? ())
#t#t
(define x (define x ‘‘((It is great) to (see) you))((It is great) to (see) you))

xx
(car x)(car x)

(It is great)(It is great)
(cdr x)(cdr x)
(to (see) you)(to (see) you)

(car (car x))(car (car x))
It It

(cdr (car x))(cdr (car x))
(is great)(is great)

Scheme: List Processing (1)Scheme: List Processing (1)

Quote
delays

evaluation
of

expression

(define (define aa (cons 1(cons 10 20))0 20))
(define b (cons 3 7))(define b (cons 3 7))
(define c (cons a b))(define c (cons a b))

Scheme: List Processing (2)Scheme: List Processing (2)

Not a list!!
(not null terminated)

(define (define aa (cons 10 (cons 20(cons 10 (cons 20 ‘‘()))()))
(define a (list 10 20)(define a (list 10 20) Equivalent

(define (lenght x)(define (lenght x)
(cond ((null? x) 0)(cond ((null? x) 0)

(else (+ 1 (length (cdr x))))))(else (+ 1 (length (cdr x))))))

(define (append x z)(define (append x z)
(cond ((null? x) z)(cond ((null? x) z)

(else (cons (car x) (append (cdr x) z)))))(else (cons (car x) (append (cdr x) z)))))

(append `(a b c) `(d))(append `(a b c) `(d))
(a b c d)(a b c d)

Scheme List Processing (3)Scheme List Processing (3)

Backboard ExercisesBackboard Exercises

Map(List,FuntionMap(List,Funtion))
Fold(List,Op,InitFold(List,Op,Init))
FoldFold--map(List,Op,Init,Functionmap(List,Op,Init,Function))

Devise a representation for staks and implementations Devise a representation for staks and implementations
for the functions:for the functions:
push (h, st) returns stack with h on toppush (h, st) returns stack with h on top
top (st) returns top element of stacktop (st) returns top element of stack
pop(st) returns stack with top element removedpop(st) returns stack with top element removed

Solution: Solution:
represent stack by a listrepresent stack by a list
push=conspush=cons
top=cartop=car
pop=cdrpop=cdr

Scheme: Implemeting Stacks as ListsScheme: Implemeting Stacks as Lists

List Representation for Binary Search TreesList Representation for Binary Search Trees

'(14 (7 () '(14 (7 ()
(12()(12()(())))))

(26 (20 (26 (20
(17()())(17()())
())())

(31()())))(31()())))

1414

7 267 26

12 20 3112 20 31

1717

Binary Search Tree Data TypeBinary Search Tree Data Type

(define make(define make--tree (lambda (n l r) (list n l r)))tree (lambda (n l r) (list n l r)))

(define empty(define empty--tree? (lambda (tree? (lambda (bstbst) (null?) (null? bstbst))))))

(define label (lambda ((define label (lambda (bstbst) (car) (car bstbst))))))

(define left(define left--subtreesubtree (lambda ((lambda (bstbst) (car () (car (cdrcdr bstbst))))))))

(define right(define right--subtreesubtree (lambda ((lambda (bstbst) (car () (car (cdrcdr (cdr(cdr bstbst))))))))))

Searching a Binary Search TreeSearching a Binary Search Tree

(define find(define find
(lambda (n (lambda (n bstbst))
((condcond

((empty((empty--tree? tree? bstbst) #f)) #f)
((= n (label ((= n (label bstbst)) #t))) #t)
((< n (label ((< n (label bstbst)) (find n (left)) (find n (left--subtreesubtree bstbst))))))
((> n (label ((> n (label bstbst)) (find n (right)) (find n (right--subtreesubtree bstbst))))))))))))

Recovering a Binary Search Tree PathRecovering a Binary Search Tree Path

(define path(define path
(lambda (n (lambda (n bstbst))
(if (empty(if (empty--tree? tree? bstbst))

‘‘() ;; didn't find it() ;; didn't find it
(if (< n (label (if (< n (label bstbst))))

(cons 'L (path n (left(cons 'L (path n (left--subtreesubtree bstbst))) ;; in the left))) ;; in the left subtreesubtree
(if (> n (label (if (> n (label bstbst))))

(cons 'R (path n (right(cons 'R (path n (right--subtreesubtree bstbst))) ;; in the right))) ;; in the right subtreesubtree
'() ;; n is '() ;; n is here, quithere, quit
))

))
))

))))

List Representation of SetsList Representation of Sets

{ 1, 2, 3, 4 }{ 1, 2, 3, 4 }

(list 1 2 3 4)(list 1 2 3 4)

Math

Scheme

List Representation of SetsList Representation of Sets

(define (member? e set)(define (member? e set)
((condcond

((null? set) #f)((null? set) #f)
((equal? e (car set)) #t)((equal? e (car set)) #t)
(else (member? e ((else (member? e (cdrcdr set)))set)))

))
))

(member? 4 (list 1 2 3 4))(member? 4 (list 1 2 3 4))
> #t> #t

Set DifferenceSet Difference

(define ((define (setdiffsetdiff lis1 lis2)lis1 lis2)
((condcond

((null? lis1) '())((null? lis1) '())
((null? lis2) lis1)((null? lis2) lis1)
((member? (car lis1) lis2)((member? (car lis1) lis2)

((setdiffsetdiff ((cdrcdr lis1) lis2))lis1) lis2))
(else (cons (car lis1) ((else (cons (car lis1) (setdiffsetdiff ((cdrcdr lis1) lis2)))lis1) lis2)))

))
))

Set IntersectionSet Intersection

(define (intersection lis1 lis2)(define (intersection lis1 lis2)
((condcond

((null? lis1) '())((null? lis1) '())
((null? lis2) '())((null? lis2) '())
((member? (car lis1) lis2)((member? (car lis1) lis2)

(cons (car lis1)(cons (car lis1)
(intersection ((intersection (cdrcdr lis1) lis2)))lis1) lis2)))

(else (intersection ((else (intersection (cdrcdr lis1) lis2))lis1) lis2))
))

))

Set UnionSet Union

(define (union lis1 lis2)(define (union lis1 lis2)
((condcond

((null? lis1) lis2)((null? lis1) lis2)
((null? lis2) lis1)((null? lis2) lis1)
((member? (car lis1) lis2)((member? (car lis1) lis2)

(cons (car lis1)(cons (car lis1)
(union ((union (cdrcdr lis1)lis1)

((setdiffsetdiff lis2 (cons (car lis1) '())))))lis2 (cons (car lis1) '())))))
(else (cons (car lis1) (union ((else (cons (car lis1) (union (cdrcdr lis1) lis2)))lis1) lis2)))

))
))

Variables, Names, Scope and LifetimeVariables, Names, Scope and Lifetime

What is Variable?What is Variable?

Imperative viewImperative view
A A variablevariable is an abstraction of a memory (state) cellis an abstraction of a memory (state) cell

Functional viewFunctional view
A variable is an abstraction of a valueA variable is an abstraction of a value

Every definition introduces a new variableEvery definition introduces a new variable
Two distinct variables may have the same Two distinct variables may have the same
namename
Variables can be characterized as a Variables can be characterized as a
sextuple of attributes:sextuple of attributes:
<name, address, value, type, scope, lifetime><name, address, value, type, scope, lifetime>

The Concept of BindingThe Concept of Binding

A A BindingBinding is an association, such as is an association, such as
between an attribute and an entity, or between an attribute and an entity, or
between an operation and a symbol, or between an operation and a symbol, or
between a variable and a value.between a variable and a value.

Binding timeBinding time is the time at which a binding is the time at which a binding
takes place.takes place.

Possible Binding TimesPossible Binding Times

Language design timeLanguage design time
bind operator symbols to operationsbind operator symbols to operations

Language implementation timeLanguage implementation time
bind floating point type to a representationbind floating point type to a representation

Compile timeCompile time
bind a variable to a type in C or Javabind a variable to a type in C or Java

Load timeLoad time
bind a FORTRAN 77 variable to a memory cellbind a FORTRAN 77 variable to a memory cell
a C a C staticstatic variablevariable

RuntimeRuntime
bind a bind a nonstaticnonstatic local variable to a memory celllocal variable to a memory cell

The Concept of Binding: Static vs. DynamicThe Concept of Binding: Static vs. Dynamic

A binding is A binding is staticstatic if it first occurs before run if it first occurs before run
time and remains unchanged throughout time and remains unchanged throughout
program execution.program execution.

A binding is A binding is dynamicdynamic if it first occurs during if it first occurs during
execution or can change during execution of execution or can change during execution of
the program.the program.

We will discuss the choices in selecting
binding times for different variable attributes

Design Issues for NamesDesign Issues for Names

Maximum length?Maximum length?
Are connector characters allowed?Are connector characters allowed?
Are names case sensitive?Are names case sensitive?
Are special words reserved words or Are special words reserved words or
keywords?keywords?

< name, address, value, type, scope, lifetime >

Address or Memory CellAddress or Memory Cell

The physical cell or collection of cells The physical cell or collection of cells
associated with a variableassociated with a variable
Also called andAlso called and ll--valuevalue
A variable may have different addresses at A variable may have different addresses at
different times during executiondifferent times during execution
A variable may have different addresses at A variable may have different addresses at
different places in a programdifferent places in a program

< name, address, value, type, scope, lifetime >

AliasesAliases

If two variable names can be used to access the If two variable names can be used to access the
same memory location, they are called same memory location, they are called aliasesaliases
Aliases are harmful to readability (program Aliases are harmful to readability (program
readers must remember all of them)readers must remember all of them)
How can aliases be created:How can aliases be created:

Pointers, reference variables, C and C++ unions, (and through Pointers, reference variables, C and C++ unions, (and through
parameters parameters -- discussed in Chapter 9)discussed in Chapter 9)

Some of the original justifications for aliases are Some of the original justifications for aliases are
no longer valid; e.g. memory reuse in FORTRANno longer valid; e.g. memory reuse in FORTRAN

Replace them with dynamic allocationReplace them with dynamic allocation

ValuesValues

ValueValue –– the the ““objectobject”” with which the variable is with which the variable is
associated at some point in timeassociated at some point in time
Also known as the Also known as the rr--valuevalue of the variableof the variable

< name, address, value, type, scope, lifetime >

TypesTypes

Determines the range of values that a Determines the range of values that a
variable may be bound to and the set of variable may be bound to and the set of
operations that are defined for values of that operations that are defined for values of that
typetype
Design Issues for TypesDesign Issues for Types

When does the binding take place? When does the binding take place? (Dynamic versus static)(Dynamic versus static)

Is the type declared explicitly or implicitly?Is the type declared explicitly or implicitly?
Can the programmer create new types?Can the programmer create new types?
When are two types compatible? When are two types compatible? (structural versus name (structural versus name

equivalence)equivalence)

When are programs checked for type correctness?When are programs checked for type correctness?
(compile time versus runtime) (compile time versus runtime)

< name, address, value, type, scope, lifetime >

ScopeScope

The The scopescope of a variable is the range of of a variable is the range of
statements over which it is visiblestatements over which it is visible
The The nonlocalnonlocal variablesvariables of a program unit are of a program unit are
those that are visible but not declared therethose that are visible but not declared there
The The scope rulesscope rules of a language determine how of a language determine how
references to names are associated with references to names are associated with
variablesvariables

< name, address, value, type, scope, lifetime >

Static ScopeStatic Scope

Binding occurs at compile timeBinding occurs at compile time
Scope based on program textScope based on program text
To connect a name reference to a variable, you (or To connect a name reference to a variable, you (or
the compiler) must find the declaration that is the compiler) must find the declaration that is
activeactive
Search processSearch process: search declarations, first locally, : search declarations, first locally,
then in increasingly larger enclosing scopes, until then in increasingly larger enclosing scopes, until
one is found for the given nameone is found for the given name
Enclosing static scopes (to a specific scope) are Enclosing static scopes (to a specific scope) are
called its called its static ancestorsstatic ancestors; the nearest static ; the nearest static
ancestor is called a ancestor is called a static parentstatic parent

Static Scope pros and consStatic Scope pros and cons

Static scope allows freedom of choice for Static scope allows freedom of choice for
local variable nameslocal variable names
But, global variables can be hidden from a But, global variables can be hidden from a
unit by having a "closer" variable with the unit by having a "closer" variable with the
same namesame name
C++ and Ada allow access to these "hidden" C++ and Ada allow access to these "hidden"
variablesvariables

In Ada: In Ada: unit.nameunit.name
In C++: In C++: class_name::nameclass_name::name

Static ScopeStatic Scope

Blocks Blocks
A method of creating static scopes inside program unitsA method of creating static scopes inside program units----from from

ALGOL 60ALGOL 60
Examples:Examples:

C and C++: C and C++: for (...) for (...)

{{
intint index;index;
......

}}

Ada: Ada: declare LCL : FLOAT;declare LCL : FLOAT;
beginbegin
......
endend

Static Scope ExampleStatic Scope Example

Consider the example:Consider the example:

MAIN

A B

C D E

Static Scope ExampleStatic Scope Example

MAIN

A

C

B

ED

MAIN

E

A

C

D

B

Static links

X:int

X:int

Variable X is
FREE in A

… X …

Static Scope ExampleStatic Scope Example

MAIN

A

C

B

ED

Dynamic links

Assume:Assume:
MAIN calls A and BMAIN calls A and B
A calls C and DA calls C and D
B calls A and EB calls A and E

A.K.A
Dynamic
Function

Call Graph

Blackboard ExerciseBlackboard Exercise

Write a scheme program that complies with the given Write a scheme program that complies with the given
scope hierarchy and call graph.scope hierarchy and call graph.
What definition of variable x is active during the call of What definition of variable x is active during the call of
B to A?B to A?

Static ScopeStatic Scope

Suppose the spec is changed so that D Suppose the spec is changed so that D
must now access some data in Bmust now access some data in B
Solutions:Solutions:

Put D in B (but then C can no longer call it and D Put D in B (but then C can no longer call it and D
cannot access A's variables)cannot access A's variables)

Move the data from B that D needs to MAIN (but Move the data from B that D needs to MAIN (but
then all procedures can access them)then all procedures can access them)

Same problem for procedure accessSame problem for procedure access

Dynamic ScopeDynamic Scope

Based on calling sequence of program Based on calling sequence of program
units, not their textual layout (temporal units, not their textual layout (temporal
versus spatial)versus spatial)

References to variables are connected to References to variables are connected to
declarations by searching back through declarations by searching back through
the chain of subprogram calls that forced the chain of subprogram calls that forced
execution to this pointexecution to this point

Scope Example 2Scope Example 2

MAINMAIN
-- declaration of xdeclaration of x

SUB1SUB1
-- declaration of x declaration of x --
......
call SUB2call SUB2
......

SUB2SUB2
......
-- reference to x reference to x --
... ...

......
call SUB1call SUB1
……

MAIN calls SUB1
SUB1 calls SUB2

SUB2 uses x

Scope Example 2Scope Example 2

Static scoping Static scoping
Reference to x is to Reference to x is to MAIN'sMAIN's xx

Dynamic scoping Dynamic scoping
Reference to x is to SUB1's xReference to x is to SUB1's x

Evaluation of Dynamic Scoping:Evaluation of Dynamic Scoping:
AdvantageAdvantage: convenience: convenience
DisadvantageDisadvantage: poor readability: poor readability

LifetimeLifetime

The The lifetimelifetime of a variable is the time during of a variable is the time during
which it is bound to a particular memory cellwhich it is bound to a particular memory cell

Categories of Variables by LifetimeCategories of Variables by Lifetime

StaticStatic
bound to memory cells before execution begins and bound to memory cells before execution begins and

remains bound to the same memory cell throughout remains bound to the same memory cell throughout
execution.execution.

e.g. all FORTRAN 77 variables, C static variablese.g. all FORTRAN 77 variables, C static variables
AdvantagesAdvantages: efficiency (direct addressing), history: efficiency (direct addressing), history--

sensitive subprogram supportsensitive subprogram support
DisadvantageDisadvantage: lack of flexibility (no recursion): lack of flexibility (no recursion)

Categories of variables by lifetimesCategories of variables by lifetimes

StackStack--dynamicdynamic
Storage bindings are created for variables when their Storage bindings are created for variables when their

declaration statements are elaborated.declaration statements are elaborated.
If scalar, all attributes except address are statically If scalar, all attributes except address are statically

boundbound
e.g. local variables in C subprograms and Java e.g. local variables in C subprograms and Java

methodsmethods
Advantage: allows recursion; conserves storageAdvantage: allows recursion; conserves storage
Disadvantages: Disadvantages:

Overhead of allocation and Overhead of allocation and deallocationdeallocation
Subprograms cannot be history sensitiveSubprograms cannot be history sensitive
Inefficient references (indirect addressing)Inefficient references (indirect addressing)

Categories of variables by lifetimesCategories of variables by lifetimes

Explicit heapExplicit heap--dynamicdynamic
Allocated and Allocated and deallocateddeallocated by explicit directives, by explicit directives,

specified by the programmer, which take effect specified by the programmer, which take effect
during executionduring execution
Referenced only through pointers or referencesReferenced only through pointers or references

e.g. dynamic objects in C++ (via new and e.g. dynamic objects in C++ (via new and
delete)delete)

all objects in Javaall objects in Java
AdvantageAdvantage: provides for dynamic storage : provides for dynamic storage

managementmanagement
DisadvantageDisadvantage: inefficient and unreliable: inefficient and unreliable

Categories of variables by lifetimesCategories of variables by lifetimes

Implicit heapImplicit heap--dynamicdynamic
Allocation and Allocation and deallocationdeallocation caused by caused by

assignment statementsassignment statements
e.g. all variables in APL; all strings and e.g. all variables in APL; all strings and

arrays in Perl and JavaScriptarrays in Perl and JavaScript
AdvantageAdvantage: flexibility: flexibility
DisadvantagesDisadvantages: :

Inefficient, because all attributes are dynamicInefficient, because all attributes are dynamic
Loss of error detectionLoss of error detection

Functional Languages: Remark 1Functional Languages: Remark 1

In Functional Languages, you can concern In Functional Languages, you can concern
yourself with the higher level details of what yourself with the higher level details of what
you want accomplished, and not with the lower you want accomplished, and not with the lower
details of how it is accomplished. In turn, this details of how it is accomplished. In turn, this
reduces both development and maintenance reduces both development and maintenance
costcost

Functional Languages: Remark 2Functional Languages: Remark 2

Digital circuits are made up of a number of Digital circuits are made up of a number of
functional units connected by wires. Thus, functional units connected by wires. Thus,
functional composition is a direct model of this functional composition is a direct model of this
application. This connection has caught the application. This connection has caught the
interest of fabricants and functional languages interest of fabricants and functional languages
are now being used to design and model chipsare now being used to design and model chips

Example: Products form Example: Products form Cadence Design Systems,Cadence Design Systems, a a
leading vendor of electronic design automation tools for IC leading vendor of electronic design automation tools for IC
design, are scripted with SKILL (a proprietary dialect of design, are scripted with SKILL (a proprietary dialect of
LISP)LISP)

Functional Languages: Remark 3Functional Languages: Remark 3

Common Language Runtime (CLR) offers the Common Language Runtime (CLR) offers the
possibility for multipossibility for multi--language solutions to language solutions to
problems within which various parts of the problems within which various parts of the
problem are best solved with different problem are best solved with different
languages, at the same time offering some layer languages, at the same time offering some layer
of transparent interof transparent inter--language communication language communication
among solution components.among solution components.

Example: Example: MondrianMondrian ((http://www.mondrianhttp://www.mondrian--script.orgscript.org) is a) is a
purely functional language specifically designed to leverage purely functional language specifically designed to leverage
the possibilities of the .NET framework. the possibilities of the .NET framework. MondrianMondrian is is
designed to interoperate with objectdesigned to interoperate with object--oriented languages oriented languages
(C++, C#)(C++, C#)

Functional Languages: Remark 4Functional Languages: Remark 4

Functional languages, in particular Scheme, Functional languages, in particular Scheme,
have a significant impact on applications areas have a significant impact on applications areas
such assuch as

Artificial Intelligence (Expert systems, planning, etc)Artificial Intelligence (Expert systems, planning, etc)
Simulation and modelingSimulation and modeling
Applications programming (CAD, Applications programming (CAD, MathematicaMathematica))
Rapid prototypingRapid prototyping
Extended languages (Extended languages (webserverswebservers, image processing), image processing)
Apps with Embedded Interpreters (EMACS lisp)Apps with Embedded Interpreters (EMACS lisp)

Functional Languages: Remark 5Functional Languages: Remark 5

If all you have is a hammer, then everything If all you have is a hammer, then everything
looks like a nail. looks like a nail.

ENDEND

