
Iteration
Advanced Programming

ICOM 4015

Lecture 6

Reading: Java Concepts Chapter 7

Chapter Goals

• To be able to program loops with the while,
for, and do statements

• To avoid infinite loops and off-by-one errors

• To understand nested loops

• To learn how to process input

• To implement simulations

while Loops

• Executes a block of code repeatedly

• A condition controls how often the loop is
executed

• Most commonly, the statement is a block
statement (set of statements delimited by { })

while (condition)
statement;

Calculating the Growth of an
Investment

• Invest $10,000, 5% interest, compounded annually

$12,155.064
$12,762.825

$11,576.253
$11,0252
$10,5001
$10,0000
BalanceYear

Calculating the Growth of an
Investment

• When has the bank account reached a
particular balance?

while (balance < targetBalance)
{

year++;
double interest = balance * rate / 100;
balance = balance + interest;

}

File Investment.java
01: /**
02: A class to monitor the growth of an investment that
03: accumulates interest at a fixed annual rate.
04: */
05: public class Investment
06: {
07: /**
08: Constructs an Investment object from a starting balance
09: and interest rate.
10: @param aBalance the starting balance
11: @param aRate the interest rate in percent
12: */
13: public Investment(double aBalance, double aRate)
14: {
15: balance = aBalance;
16: rate = aRate;
17: years = 0;
18: }
19: Continued…

File Investment.java
20: /**
21: Keeps accumulating interest until a target balance has
22: been reached.
23: @param targetBalance the desired balance
24: */
25: public void waitForBalance(double targetBalance)
26: {
27: while (balance < targetBalance)
28: {
29: years++;
30: double interest = balance * rate / 100;
31: balance = balance + interest;
32: }
33: }
34:
35: /**
36: Gets the current investment balance.
37: @return the current balance
38: */

Continued…

File Investment.java
39: public double getBalance()
40: {
41: return balance;
42: }
43:
44: /**
45: Gets the number of years this investment has
46: accumulated interest.
47: @return the number of years since the start of the

investment
48: */
49: public int getYears()
50: {
51: return years;
52: }
53:
54: private double balance;
55: private double rate;
56: private int years;
57: }

File InvestmentTester.java
01: /**
02: This program computes how long it takes for an investment
03: to double.
04: */
05: public class InvestmentTester
06: {
07: public static void main(String[] args)
08: {
09: final double INITIAL_BALANCE = 10000;
10: final double RATE = 5;
11: Investment invest

= new Investment(INITIAL_BALANCE, RATE);
12: invest.waitForBalance(2 * INITIAL_BALANCE);
13: int years = invest.getYears();
14: System.out.println("The investment doubled after "
15: + years + " years");
16: }
17: }

Continued…

File InvestmentTester.java

The investment doubled after 15 years

Output

while Loop Flowchart

Figure 1:
Flowchart of a while Loop

Syntax 7.1: The while Statement

while (condition)
statement

Example:
while (balance < targetBalance)
{

year++;
double interest = balance * rate / 100;
balance = balance + interest;

}

Purpose:
To repeatedly execute a statement as long as a condition is true

Self Check

1. How often is the statement in the loop

executed?

2. What would happen if RATE was set to 0 in
the main method of the InvestmentTester
program?

while (false) statement;

Answers

1. Never

2. The waitForBalance method would never
return due to an infinite loop

Common Error: Infinite Loops

• .

•

• Loops run forever–must kill program

int years = 0;
while (years < 20)
{

double interest = balance * rate / 100;
balance = balance + interest;

}

int years = 20;
while (years > 0)
{

years++; // Oops, should have been years--
double interest = balance * rate / 100;
balance = balance + interest;

}

Common Error: Off-By-One Errors
int years = 0;
while (balance < 2 * initialBalance)
{

years++;
double interest = balance * rate / 100;
balance = balance + interest;

}
System.out.println("The investment reached the target after "

+ years + " years.");

• Should years start at 0 or 1?

• Should the test be < or <=?

Avoiding Off-by-One Error

• Look at a scenario with simple values:
initial balance: $100
interest rate: 50%
after year 1, the balance is $150
after year 2 it is $225, or over $200
so the investment doubled after 2 years
the loop executed two times, incrementing
years each time
Therefore: years must start at 0, not at 1.

Continued…

Avoiding Off-by-One Error

• interest rate: 100%
after one year: balance is 2 * initialBalance
loop should stop
Therefore: must use <

• Think, don't compile and try at random

do Loops

• Executes loop body at least once:

• Example: Validate input

do
statement while (condition);

double value;
do
{

System.out.print("Please enter a positive number: ");
value = in.nextDouble();

}
while (value <= 0);

Continued…

do Loops

• Alternative:

boolean done = false;
while (!done)
{

System.out.print("Please enter a positive number: ");
value = in.nextDouble();
if (value > 0) done = true;

}

do Loop Flowchart

Figure 2:
Flowchart of a do Loop

Spaghetti Code

Figure 3:
Spaghetti Code

for Loops

•

Example:

for (initialization; condition; update)
statement

for (int i = 1; i <= n; i++)
{

double interest = balance * rate / 100;
balance = balance + interest;

}

Continued…

for Loops

• Equivalent to

• Other examples:

initialization;
while (condition)
{ statement; update; }

for (years = n; years > 0; years--) . . .

for (x = -10; x <= 10; x = x + 0.5) . . .

Flowchart for for Loop

Figure 4:
Flowchart of a for Loop

Syntax 7.2: The for Statement
for (initialization; condition; update)

statement

Example:
for (int i = 1; i <= n; i++)
{

double interest = balance * rate / 100;
balance = balance + interest;

}

Purpose:
To execute an initialization, then keep executing a statement and updating an
expression while a condition is true

File Investment.java
01: /**
02: A class to monitor the growth of an investment that
03: accumulates interest at a fixed annual rate
04: */
05: public class Investment
06: {
07: /**
08: Constructs an Investment object from a starting
09: balance and interest rate.
10: @param aBalance the starting balance
11: @param aRate the interest rate in percent
12: */
13: public Investment(double aBalance, double aRate)
14: {
15: balance = aBalance;
16: rate = aRate;
17: years = 0;
18: } Continued…

File Investment.java

19:
20: /**
21: Keeps accumulating interest until a target balance
22: has been reached.
23: @param targetBalance the desired balance
24: */
25: public void waitForBalance(double targetBalance)
26: {
27: while (balance < targetBalance)
28: {
29: years++;
30: double interest = balance * rate / 100;
31: balance = balance + interest;
32: }
33: }
34: Continued…

File Investment.java

35: /**
36: Keeps accumulating interest for a given number of years.
37: @param n the number of years
38: */
39: public void waitYears(int n)
40: {
41: for (int i = 1; i <= n; i++)
42: {
43: double interest = balance * rate / 100;
44: balance = balance + interest;
45: }
46: years = years + n;
47: }
48:
49: /**
50: Gets the current investment balance.
51: @return the current balance
52: */ Continued…

File Investment.java
53: public double getBalance()
54: {
55: return balance;
56: }
57:
58: /**
59: Gets the number of years this investment has
60: accumulated interest.
61: @return the number of years since the start of the

investment
62: */
63: public int getYears()
64: {
65: return years;
66: }
67: Continued…

File Investment.java

68: private double balance;
69: private double rate;
70: private int years;
71: }

File InvestmentTester.java
01: /**
02: This program computes how much an investment grows in
03: a given number of years.
04: */
05: public class InvestmentTester
06: {
07: public static void main(String[] args)
08: {
09: final double INITIAL_BALANCE = 10000;
10: final double RATE = 5;
11: final int YEARS = 20;
12: Investment invest = new Investment(INITIAL_BALANCE, RATE);
13: invest.waitYears(YEARS);
14: double balance = invest.getBalance();
15: System.out.printf("The balance after %d years is %.2f\n",
16: YEARS, balance);
17: }
18: }

Continued…

File Investment.java

The balance after 20 years is 26532.98

Output

Self Check

1. Rewrite the for loop in the waitYears
method as a while loop

2. How many times does the following for loop
execute?

for (i = 0; i <= 10; i++)
System.out.println(i * i);

Answers

1.

1. 11 times

int i = 1;
while (i <= n)
{

double interest = balance * rate / 100;
balance = balance + interest;
i++;

}

Common Errors: Semicolons

• A semicolon that shouldn't be there

• A missing semicolon

sum = 0;
for (i = 1; i <= 10; i++);

sum = sum + i;
System.out.println(sum);

for (years = 1; (balance = balance + balance *
rate / 100) < targetBalance; years++)

System.out.println(years);

Nested Loops

• Create triangle pattern

• Loop through rows

[]
[][]
[][][]
[][][][]

for (int i = 1; i <= n; i++)
{

// make triangle row
}

Nested Loops

• Make triangle row is another loop

• Put loops together → Nested loops

for (int j = 1; j <= i; j++)
r = r + "[]";

r = r + "\n";

File Triangle.java
01: /**
02: This class describes triangle objects that can be
03: displayed as shapes like this:
04: []
05: [][]
06: [][][]
07: */
08: public class Triangle
09: {
10: /**
11: Constructs a triangle.
12: @param aWidth the number of [] in the last row of

the triangle.
13: */
14: public Triangle(int aWidth)
15: {
16: width = aWidth;
17: }
18:

Continued…

File Triangle.java
19: /**
20: Computes a string representing the triangle.
21: @return a string consisting of [] and newline

characters
22: */
23: public String toString()
24: {
25: String r = "";
26: for (int i = 1; i <= width; i++)
27: {
28: // Make triangle row
29: for (int j = 1; j <= i; j++)
30: r = r + "[]";
31: r = r + "\n";
32: }
33: return r;
34: }
35:
36: private int width;
37: }

File TriangleTester.java

01: /**
02: This program tests the Triangle class.
03: */
04: public class TriangleTester
05: {
06: public static void main(String[] args)
07: {
08: Triangle small = new Triangle(3);
09: System.out.println(small.toString());
10:
11: Triangle large = new Triangle(15);
12: System.out.println(large.toString());
13: }
14: }

Output
[]
[][]
[][][]

[]
[][]
[][][]
[][][][]
[][][][][]
[][][][][][]
[][][][][][][]
[][][][][][][][]
[][][][][][][][][]
[][][][][][][][][][]
[][][][][][][][][][][]
[][][][][][][][][][][][]
[][][][][][][][][][][][][]
[][][][][][][][][][][][][][]
[][][][][][][][][][][][][][][]

Self Check

1. How would you modify the nested loops so
that you print a square instead of a
triangle?

2. What is the value of n after the following
nested loops?

int n = 0;
for (int i = 1; i <= 5; i++)

for (int j = 0; j < i; j++)
n = n + j;

Answers

1. Change the inner loop to

2. 20

for (int j = 1; j <= width; j++)

Processing Sentinel Values
• Sentinel value: Can be used for indicating

the end of a data set

• 0 or -1 make poor sentinels; better use Q

System.out.print("Enter value, Q to quit: ");
String input = in.next();
if (input.equalsIgnoreCase("Q"))

We are done
else
{

double x = Double.parseDouble(input);
. . .

}

Loop and a half
• Sometimes termination condition of a loop

can only be evaluated in the middle of the
loop

• Then, introduce a boolean variable to control
the loop: boolean done = false;

while (!done)
{

Print prompt String input = read input;
if (end of input indicated)

done = true;
else
{

// Process input
}

}

File InputTester.java

01: import java.util.Scanner;
02:
03: /**
04: This program computes the average and maximum of a set
05: of input values.
06: */
07: public class InputTester
08: {
09: public static void main(String[] args)
10: {
11: Scanner in = new Scanner(System.in);
12: DataSet data = new DataSet();
13:
14: boolean done = false;
15: while (!done)
16: { Continued…

File InputTester.java
17: System.out.print("Enter value, Q to quit: ");
18: String input = in.next();
19: if (input.equalsIgnoreCase("Q"))
20: done = true;
21: else
22: {
23: double x = Double.parseDouble(input);
24: data.add(x);
25: }
26: }
27:
28: System.out.println("Average = " + data.getAverage());
29: System.out.println("Maximum = " + data.getMaximum());
30: }
31: }

File DataSet.java
01: /**
02: Computes the average of a set of data values.
03: */
04: public class DataSet
05: {
06: /**
07: Constructs an empty data set.
08: */
09: public DataSet()
10: {
11: sum = 0;
12: count = 0;
13: maximum = 0;
14: }
15:
16: /**
17: Adds a data value to the data set
18: @param x a data value
19: */ Continued…

File DataSet.java
20: public void add(double x)
21: {
22: sum = sum + x;
23: if (count == 0 || maximum < x) maximum = x;
24: count++;
25: }
26:
27: /**
28: Gets the average of the added data.
29: @return the average or 0 if no data has been added
30: */
31: public double getAverage()
32: {
33: if (count == 0) return 0;
34: else return sum / count;
35: }
36: Continued…

File DataSet.java
37: /**
38: Gets the largest of the added data.
39: @return the maximum or 0 if no data has been added
40: */
41: public double getMaximum()
42: {
43: return maximum;
44: }
45:
46: private double sum;
47: private double maximum;
48: private int count;
49: }

Output

Enter value, Q to quit: 10
Enter value, Q to quit: 0
Enter value, Q to quit: -1
Enter value, Q to quit: Q
Average = 3.0
Maximum = 10.0

Self Check

1. Why does the InputTester class call
in.next and not in.nextDouble?

2. Would the DataSet class still compute the
correct maximum if you simplified the
update of the maximum field in the add
method to the following statement?

if (maximum < x) maximum = x;

Answers

1. Because we don't know whether the next
input is a number or the letter Q.

2. No. If all input values are negative, the
maximum is also negative. However, the
maximum field is initialized with 0. With this
simplification, the maximum would be
falsely computed as 0.

Random Numbers and Simulations

• In a simulation, you repeatedly generate
random numbers and use them to simulate
an activity

• Random number generator

• Throw die (random number between 1 and 6)

Random generator = new Random();
int n = generator.nextInt(a); // 0 <= n < a
double x = generator.nextDouble(); // 0 <= x < 1

int d = 1 + generator.nextInt(6);

File Die.java
01: import java.util.Random;
02:
03: /**
04: This class models a die that, when cast, lands on a
05: random face.
06: */
07: public class Die
08: {
09: /**
10: Constructs a die with a given number of sides.
11: @param s the number of sides, e.g. 6 for a normal die
12: */
13: public Die(int s)
14: {
15: sides = s;
16: generator = new Random();
17: }
18: Continued…

File Die.java
19: /**
20: Simulates a throw of the die
21: @return the face of the die
22: */
23: public int cast()
24: {
25: return 1 + generator.nextInt(sides);
26: }
27:
28: private Random generator;
29: private int sides;
30: }

File DieTester.java
01: /**
02: This program simulates casting a die ten times.
03: */
04: public class DieTester
05: {
06: public static void main(String[] args)
07: {
08: Die d = new Die(6);
09: final int TRIES = 10;
10: for (int i = 1; i <= TRIES; i++)
11: {
12: int n = d.cast();
13: System.out.print(n + " ");
14: }
15: System.out.println();
16: }
17: }

Output

6 5 6 3 2 6 3 4 4 1

Second Run
3 2 2 1 6 5 3 4 1 2

Buffon Needle Experiment

Figure 5:
The Buffon Needle Experiment

Figure 6:
When Does a Needle Fall on a Line?

Needle Position

Needle Position

• Needle length = 1, distance between lines = 2

• Generate random ylow between 0 and 2

• Generate random angle α between 0 and 180
degrees

• yhigh = ylow + sin(α)

• Hit if yhigh ≥ 2

File Needle.java
01: import java.util.Random;
02:
03: /**
04: This class simulates a needle in the Buffon needle

experiment.
05: */
06: public class Needle
07: {
08: /**
09: Constructs a needle.
10: */
11: public Needle()
12: {
13: hits = 0;
14: tries = 0;
15: generator = new Random();
16: }
17: Continued…

File Needle.java
18: /**
19: Drops the needle on the grid of lines and
20: remembers whether the needle hit a line.
21: */
22: public void drop()
23: {
24: double ylow = 2 * generator.nextDouble();
25: double angle = 180 * generator.nextDouble();
26:
27: // Computes high point of needle
28:
29: double yhigh = ylow + Math.sin(Math.toRadians(angle));
30: if (yhigh >= 2) hits++;
31: tries++;
32: }
33:
34: /**
35: Gets the number of times the needle hit a line.
36: @return the hit count
37: */ Continued…

File Needle.java
38: public int getHits()
39: {
40: return hits;
41: }
42:
43: /**
44: Gets the total number of times the needle was dropped.
45: @return the try count
46: */
47: public int getTries()
48: {
49: return tries;
50: }
51:
52: private Random generator;
53: private int hits;
54: private int tries;
55: }

File NeedleTester.java

01: /**
02: This program simulates the Buffon needle experiment
03: and prints the resulting approximations of pi.
04: */
05: public class NeedleTester
06: {
07: public static void main(String[] args)
08: {
09: Needle n = new Needle();
10: final int TRIES1 = 10000;
11: final int TRIES2 = 1000000;
12: Continued…

File NeedleTester.java
13: for (int i = 1; i <= TRIES1; i++)
14: n.drop();
15: System.out.printf("Tries = %d, Tries / Hits = %8.5f\n",
16: TRIES1, (double) n.getTries() / n.getHits());
17:
18: for (int i = TRIES1 + 1; i <= TRIES2; i++)
19: n.drop();
20: System.out.printf("Tries = %d, Tries / Hits = %8.5f\n",
21: TRIES2, (double) n.getTries() / n.getHits());
22: }
23: }

Output
Tries = 10000, Tries / Hits = 3.08928
Tries = 1000000, Tries / Hits = 3.14204

Self Check

1. How do you use a random number
generator to simulate the toss of a coin?

2. Why is the NeedleTester program not an
efficient method for computing π?

Answers

1.

2. The program repeatedly calls
Math.toRadians(angle). You could
simply call Math.toRadians(180) to
compute π

int n = generator.nextInt(2); // 0 = heads, 1 = tails

