
Fall 2006 Adapted from Java Concepts Companion Slides 1

Testing and Debugging

Advanced Programming

ICOM 4015

Lecture 9

Reading: Java Concepts Chapter 10

Fall 2006 Adapted from Java Concepts Companion Slides 2

Chapter Goals

• To learn how to carry out unit tests

• To understand the principles of test case
selection and evaluation

• To learn how to use logging

• To become familiar with using a debugger

• To learn strategies for effective debugging

Fall 2006 Adapted from Java Concepts Companion Slides 3

Unit Tests
• The single most important testing tool

• Checks a single method or a set of
cooperating methods

• You don't test the complete program that you
are developing; you test the classes in
isolation

• For each test, you provide a simple class
called a test harness

• Test harness feeds parameters to the
methods being tested

Fall 2006 Adapted from Java Concepts Companion Slides 4

Example: Setting Up Test Harnesses
• To compute the square root of a use a common

algorithm:
1. Guess a value x that might be somewhat close to the

desired square root (x = a is ok)
2. Actual square root lies between x and a/x
3. Take midpoint (x + a/x) / 2 as a better guess

4. Repeat the procedure. Stop when two successive
approximations are very close to each other

Continued…

Figure 1: Approximating a Square Root

Fall 2006 Adapted from Java Concepts Companion Slides 5

Example: Setting Up Test Harnesses

• Method converges rapidly. Square root of 100:

Guess #1: 50.5
Guess #2: 26.24009900990099
Guess #3: 15.025530119986813
Guess #4: 10.840434673026925
Guess #5: 10.032578510960604
Guess #6: 10.000052895642693
Guess #7: 10.000000000139897
Guess #8: 10.0

Fall 2006 Adapted from Java Concepts Companion Slides 6

File RootApproximator.java
01: /**
02: Computes approximations to the square root of
03: a number, using Heron's algorithm.
04: */
05: public class RootApproximator
06: {
07: /**
08: Constructs a root approximator for a given number.
09: @param aNumber the number from which to extract the

// square root
10: (Precondition: aNumber >= 0)
11: */
12: public RootApproximator(double aNumber)
13: {
14: a = aNumber;
15: xold = 1;
16: xnew = a;
17: } Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 7

File RootApproximator.java

18:
19: /**
20: Computes a better guess from the current guess.
21: @return the next guess
22: */
23: public double nextGuess()
24: {
25: xold = xnew;
26: if (xold != 0)
27: xnew = (xold + a / xold) / 2;
28: return xnew;
29: }
30:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 8

File RootApproximator.java
31: /**
32: Computes the root by repeatedly improving the current
33: guess until two successive guesses are approximately

// equal.
34: @return the computed value for the square root
35: */
36: public double getRoot()
37: {
38: assert a >= 0;
39: while (!Numeric.approxEqual(xnew, xold))
40: nextGuess();
41: return xnew;
42: }
43:
44: private double a; // The number whose square root

// is computed
45: private double xnew; // The current guess
46: private double xold; // The old guess
47: }

Fall 2006 Adapted from Java Concepts Companion Slides 9

File Numeric.java
01: /**
02: A class for useful numeric methods.
03: */
04: public class Numeric
05: {
06: /**
07: Tests whether two floating-point numbers are.
08: equal, except for a roundoff error
09: @param x a floating-point number
10: @param y a floating-point number
11: @return true if x and y are approximately equal
12: */
13: public static boolean approxEqual(double x, double y)
14: {
15: final double EPSILON = 1E-12;
16: return Math.abs(x - y) <= EPSILON;
17: }
18: }

Fall 2006 Adapted from Java Concepts Companion Slides 10

File: RootApproximatorTester.java
01: import java.util.Scanner;
02:
03: /**
04: This program prints ten approximations for a square root.
05: */
06: public class RootApproximatorTester
07: {
08: public static void main(String[] args)
09: {
10: System.out.print("Enter a number: ");
11: Scanner in = new Scanner(System.in);
12: double x = in.nextDouble();
13: RootApproximator r = new RootApproximator(x);
14: final int MAX_TRIES = 10;
15: for (int tries = 1; tries <= MAX_TRIES; tries++)
16: {
17: double y = r.nextGuess();
18: System.out.println("Guess #" + tries + ": " + y);
19: }
20: System.out.println("Square root: " + r.getRoot());
21: }
22: }

Fall 2006 Adapted from Java Concepts Companion Slides 11

Testing the Program

• Output
Enter a number: 100
Guess #1: 50.5
Guess #2: 26.24009900990099
Guess #3: 15.025530119986813
Guess #4: 10.840434673026925
Guess #5: 10.032578510960604
Guess #6: 10.000052895642693
Guess #7: 10.000000000139897
Guess #8: 10.0
Guess #9: 10.0
Guess #10: 10.0
Square root: 10.0

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 12

Testing the Program

• Does the RootApproximator class work
correctly for all inputs?
It needs to be tested with more values

• Re-testing with other values repetitively is
not a good idea; the tests are not repeatable

• If a problem is fixed and re-testing is needed,
you would need to remember your inputs

• Solution: Write test harnesses that make it
easy to repeat unit tests

Fall 2006 Adapted from Java Concepts Companion Slides 13

Self Check

1. What is the advantage of unit testing?

2. Why should a test harness be repeatable?

Fall 2006 Adapted from Java Concepts Companion Slides 14

Answers

1. It is easier to test methods and classes in
isolation than it is to understand failures in
a complex program.

2. It should be easy and painless to repeat a
test after fixing a bug.

Fall 2006 Adapted from Java Concepts Companion Slides 15

Providing Test Input

• There are various mechanisms for providing
test cases

• One mechanism is to hardwire test inputs
into the test harness

• Simply execute the test harness whenever
you fix a bug in the class that is being tested

• Alternative: place inputs on a file instead

Fall 2006 Adapted from Java Concepts Companion Slides 16

File
RootApproximatorHarness1.java
01: /**
02: This program computes square roots of selected input

// values.
03: */
04: public class RootApproximatorHarness1
05: {
06: public static void main(String[] args)
07: {
08: double[] testInputs = { 100, 4, 2, 1, 0.25, 0.01 };
09: for (double x : testInputs)
10: {
11: RootApproximator r = new RootApproximator(x);
12: double y = r.getRoot();
13: System.out.println("square root of " + x
14: + " = " + y);
15: }
16: }
17: }

Fall 2006 Adapted from Java Concepts Companion Slides 17

File
RootApproximatorHarness1.java

• Output

square root of 100.0 = 10.0
square root of 4.0 = 2.0
square root of 2.0 = 1.414213562373095
square root of 1.0 = 1.0
square root of 0.25 = 0.5
square root of 0.01 = 0.1

Fall 2006 Adapted from Java Concepts Companion Slides 18

Providing Test Input

• You can also generate test cases
automatically

• For few possible inputs, feasible to run
through (representative) number of them
with a loop

Fall 2006 Adapted from Java Concepts Companion Slides 19

File RootApproximatorHarness2.java
01: /**
02: This program computes square roots of input values
03: supplied by a loop.
04: */
05: public class RootApproximatorHarness2
06: {
07: public static void main(String[] args)
08: {
09: final double MIN = 1;
10: final double MAX = 10;
11: final double INCREMENT = 0.5;
12: for (double x = MIN; x <= MAX; x = x + INCREMENT)
13: {
14: RootApproximator r = new RootApproximator(x);
15: double y = r.getRoot();
16: System.out.println("square root of " + x
17: + " = " + y);
18: }
19: }
20: }

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 20

File
RootApproximatorHarness2.java

• Output

square root of 1.0 = 1.0
square root of 1.5 = 1.224744871391589
square root of 2.0 = 1.414213562373095
. . .
square root of 9.0 = 3.0
square root of 9.5 = 3.0822070014844885
square root of 10.0 = 3.162277660168379

Fall 2006 Adapted from Java Concepts Companion Slides 21

Providing Test Input

• Previous test restricted to small subset of
values

• Alternative: random generation of test cases

Fall 2006 Adapted from Java Concepts Companion Slides 22

File RootApproximatorHarness3.java
01: import java.util.Random;
03: /**
04: This program computes square roots of random inputs.
05: */
06: public class RootApproximatorHarness3
07: {
08: public static void main(String[] args)
09: {
10: final double SAMPLES = 100;
11: Random generator = new Random();
12: for (int i = 1; i <= SAMPLES; i++)
13: {
14: // Generate random test value
15:
16: double x = 1000 * generator.nextDouble();
17: RootApproximator r = new RootApproximator(x);
18: double y = r.getRoot();
19: System.out.println("square root of " + x
20: + " = " + y);
21: }
22: }
23: }

Fall 2006 Adapted from Java Concepts Companion Slides 23

File
RootApproximatorHarness3.java

• Output

square root of 810.4079626570873 = 28.467665212607223
square root of 480.50291114306344 = 21.9203766195534
square root of 643.5463246844379 = 25.36821485017103
square root of 506.5708496713842 = 22.507128863348704
square root of 539.6401504334708 = 23.230156057019308
square root of 795.0220214851004 = 28.196134867834285
. . .

Fall 2006 Adapted from Java Concepts Companion Slides 24

Providing Test Input

• Selecting good test cases is an important
skill for debugging programs

• Test all features of the methods that you are
testing

• Test typical test cases
100, 1/4, 0.01, 2, 10E12, for the
SquareRootApproximator

• Test boundary test cases: test cases that are
at the boundary of acceptable inputs
0, for the SquareRootApproximator

Fall 2006 Adapted from Java Concepts Companion Slides 25

Providing Test Input

• Programmers often make mistakes dealing
with boundary conditions
Division by zero, extracting characters from
empty strings, and accessing null pointers

• Gather negative test cases: inputs that you
expect program to reject
Example: square root of -2. Test passes if
harness terminates with assertion failure (if
assertion checking is enabled)

Fall 2006 Adapted from Java Concepts Companion Slides 26

Reading Test Inputs From a File

• More elegant to place test values in a file

• Input redirection:

• Some IDEs do not support input redirection.
Then, use command window (shell).

• Output redirection:

java Program < data.txt

java Program > output.txt

Fall 2006 Adapted from Java Concepts Companion Slides 27

File RootApproximatorHarness4.java
01: import java.util.Scanner;
03: /**
04: This program computes square roots of inputs supplied
05: through System.in.
06: */
07: public class RootApproximatorHarness4
08: {
09: public static void main(String[] args)
10: {
11: Scanner in = new Scanner(System.in);
12: boolean done = false;
13: while (in.hasNextDouble())
14: {
15: double x = in.nextDouble();
16: RootApproximator r = new RootApproximator(x);
17: double y = r.getRoot();
18:
19: System.out.println("square root of " + x
20: + " = " + y);
21: }
22: }
23: }

Fall 2006 Adapted from Java Concepts Companion Slides 28

Reading Test Inputs From a File

• File test.in:

Run the program:

1 100
2 4
3 2
4 1
5 0.25
6 0.01

java RootApproximatorHarness4 < test.in > test.out

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 29

Reading Test Inputs From a File

• File test.out:
1 square root of 100.0 = 10.0
2 square root of 4.0 = 2.0
3 square root of 2.0 = 1.414213562373095
4 square root of 1.0 = 1.0
5 square root of 0.25 = 0.5
6 square root of 0.01 = 0.1

Fall 2006 Adapted from Java Concepts Companion Slides 30

Self Test

1. How can you repeat a unit test without
having to retype input values?

2. Why is it important to test boundary cases?

Fall 2006 Adapted from Java Concepts Companion Slides 31

Answers

1. By putting the values in a file, or by
generating them programmatically.

2. Programmers commonly make mistakes
when dealing with boundary conditions.

Fall 2006 Adapted from Java Concepts Companion Slides 32

Test Case Evaluation

• How do you know whether the output is
correct?

• Calculate correct values by hand
E.g., for a payroll program, compute taxes
manually

• Supply test inputs for which you know the
answer
E.g., square root of 4 is 2 and square root of
100 is 10

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 33

Test Case Evaluation

• Verify that the output values fulfill certain
properties
E.g., square root squared = original value

• Use an Oracle: a slow but reliable method to
compute a result for testing purposes
E.g., use Math.pow to slower calculate x1/2

(equivalent to the square root of x)

Fall 2006 Adapted from Java Concepts Companion Slides 34

File
RootApproximatorHarness5.java
01: import java.util.Random;
02:
03: /**
04: This program verifies the computation of square root

// values
05: by checking a mathematical property of square roots.
06: */
07: public class RootApproximatorHarness5
08: {
09: public static void main(String[] args)
10: {
11: final double SAMPLES = 100;
12: int passcount = 0;
13: int failcount = 0;
14: Random generator = new Random();
15: for (int i = 1; i <= SAMPLES; i++)
16: { Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 35

File
RootApproximatorHarness5.java
17: // Generate random test value
18:
19: double x = 1000 * generator.nextDouble();
20: RootApproximator r = new RootApproximator(x);
21: double y = r.getRoot();
22:
23: // Check that test value fulfills square property
24:
25: if (Numeric.approxEqual(y * y, x))
26: {
27: System.out.print("Test passed: ");
28: passcount++;
29: }
30: else
31: {
32: System.out.print("Test failed: ");
33: failcount++;
34: } Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 36

File
RootApproximatorHarness5.java

35:
36: System.out.println("x = " + x
37: + ", root squared = " + y * y);
38: }
39: System.out.println("Pass: " + passcount);
40: System.out.println("Fail: " + failcount);
41: }
42: }

Fall 2006 Adapted from Java Concepts Companion Slides 37

File
RootApproximatorHarness5.java

• Output

Test passed: x = 913.6505141736327, root squared = 913.6505141736328
Test passed: x = 810.4959723987972, root squared = 810.4959723987972
Test passed: x = 503.84630929985883, root squared = 503.8463092998589
Test passed: x = 115.4885096006315, root squared = 115.48850960063153
Test passed: x = 384.973238438713, root squared = 384.973238438713
. . .
Pass: 100
Fail: 0

Fall 2006 Adapted from Java Concepts Companion Slides 38

File
RootApproximatorHarness6.java
01: import java.util.Random;
02:
03: /**
04: This program verifies the computation of square root

// values
05: by using an oracle.
06: */
07: public class RootApproximatorHarness6
08: {
09: public static void main(String[] args)
10: {
11: final double SAMPLES = 100;
12: int passcount = 0;
13: int failcount = 0;
14: Random generator = new Random();
15: for (int i = 1; i <= SAMPLES; i++)
16: {
17: // Generate random test value
18:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 39

File
RootApproximatorHarness6.java
19: double x = 1000 * generator.nextDouble();
20: RootApproximator r = new RootApproximator(x);
21: double y = r.getRoot();
22:
23: double oracleValue = Math.pow(x, 0.5);
24:
25: // Check that test value approximately equals

// oracle value
26:
27: if (Numeric.approxEqual(y, oracleValue))
28: {
29: System.out.print("Test passed: ");
30: passcount++;
31: }
32: else
33: {
34: System.out.print("Test failed: ");
35: failcount++;
36: } Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 40

File
RootApproximatorHarness6.java

37: System.out.println("square root = " + y
38: + ", oracle = " + oracleValue);
39: }
40: System.out.println("Pass: " + passcount);
41: System.out.println("Fail: " + failcount);
42: }
43: }

Fall 2006 Adapted from Java Concepts Companion Slides 41

File
RootApproximatorHarness5.java

• Output

Test passed: square root = 718.3849112194539, oracle = 718.3849112194538
Test passed: square root = 641.2739466673618, oracle = 641.2739466673619
Test passed: square root = 896.3559528159169, oracle = 896.3559528159169
Test passed: square root = 591.4264541724909, oracle = 591.4264541724909
Test passed: square root = 721.029957736384, oracle = 721.029957736384
. . .
Pass: 100
Fail: 0

Fall 2006 Adapted from Java Concepts Companion Slides 42

Self Test

1. Your task is to test a class that computes
sales taxes for an Internet shopping site.
Can you use an oracle?

2. Your task is to test a method that computes
the area of an arbitrary polygon. Which
polygons with known areas can you use as
test inputs?

Fall 2006 Adapted from Java Concepts Companion Slides 43

Answers

1. Probably not–there is no easily accessible
but slow mechanism to compute sales
taxes. You will probably need to verify the
calculations by hand.

2. There are well-known formulas for the areas
of triangles, rectangles, and regular n-gons.

Fall 2006 Adapted from Java Concepts Companion Slides 44

Regression Testing

• Save test cases

• Use saved test cases in subsequent versions

• A test suite is a set of tests for repeated
testing

• Cycling = bug that is fixed but reappears in
later versions

• Regression testing: repeating previous tests
to ensure that known failures of prior
versions do not appear in new versions

Fall 2006 Adapted from Java Concepts Companion Slides 45

Test Coverage
• Black-box testing: test functionality without

consideration of internal structure of
implementation

• White-box testing: take internal structure into
account when designing tests

• Test coverage: measure of how many parts
of a program have been tested

• Make sure that each part of your program is
exercised at least once by one test case
E.g., make sure to execute each branch in at
least one test case

Fall 2006 Adapted from Java Concepts Companion Slides 46

Test Coverage

• Tip: write first test cases before program is
written completely → gives insight into what
program should do

• Modern programs can be challenging to test
Graphical user interfaces (use of mouse)
Network connections (delay and failures)
There are tools to automate testing in this scenarios
Basic principles of regression testing and complete
coverage still hold

Fall 2006 Adapted from Java Concepts Companion Slides 47

Self Test

1. Suppose you modified the code for a
method. Why do you want to repeat tests
that already passed with the previous
version of the code?

2. Suppose a customer of your program finds
an error. What action should you take
beyond fixing the error?

Fall 2006 Adapted from Java Concepts Companion Slides 48

Answers

1. It is possible to introduce errors when
modifying code.

2. Add a test case to the test suite that verifies
that the error is fixed.

Fall 2006 Adapted from Java Concepts Companion Slides 49

Unit Testing With JUnit

• http://junit.org

• Built into some IDEs like BlueJ and Eclipse

• Philosophy: whenever you implement a
class, also make a companion test class

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 50

Unit Testing With JUnit

Figure 2:
Unit Testing with JUnit

Fall 2006 Adapted from Java Concepts Companion Slides 51

Program Trace

• Messages that show the path of execution

if (status == SINGLE)
{
System.out.println("status is SINGLE");
. . .
}
. . .

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 52

Program Trace

• Drawback: Need to remove them when
testing is complete, stick them back in when
another error is found

• Solution: use the Logger class to turn off
the trace messages without removing them
from the program

Fall 2006 Adapted from Java Concepts Companion Slides 53

Logging

• Logging messages can be deactivated when
testing is complete

• Use global object Logger.global

• Log a message

Logger.global.info("status is SINGLE");

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 54

Logging

• By default, logged messages are printed.
Turn them off with

• Logging can be a hassle (should not log too
much nor too little)

• Some programmers prefer debugging (next
section) to logging

Logger.global.setLevel(Level.OFF);

Fall 2006 Adapted from Java Concepts Companion Slides 55

Logging

• When tracing execution flow, the most
important events are entering and exiting a
method

• At the beginning of a method, print out the
parameters:

public TaxReturn(double anIncome, int aStatus)
{

Logger.global.info("Parameters: anIncome = " + anIncome
+ " aStatus = " + aStatus);

. . .
}

Fall 2006 Adapted from Java Concepts Companion Slides 56

Logging

• At the end of a method, print out the return
value:

public double getTax()
{

. . .
Logger.global.info("Return value = " + tax);
return tax;

}

Fall 2006 Adapted from Java Concepts Companion Slides 57

Self Check

1. Should logging be activated during testing
or when a program is used by its
customers?

2. Why is it better to send trace messages to
Logger.global than to System.out?

Fall 2006 Adapted from Java Concepts Companion Slides 58

Answers

1. Logging messages report on the internal
workings of your program–your customers
would not want to see them. They are
intended for testing only.

2. It is easy to deactivate Logger.global
when you no longer want to see the trace
messages, and to reactivate it when you
need to see them again.

Fall 2006 Adapted from Java Concepts Companion Slides 59

Using a Debugger

• Debugger = program to run your program
and analyze its run-time behavior

• A debugger lets you stop and restart your
program, see contents of variables, and step
through it

• The larger your programs, the harder to
debug them simply by logging

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 60

Using a Debugger

• Debuggers can be part of your IDE (Eclipse,
BlueJ) or separate programs (JSwat)

• Three key concepts:
Breakpoints
Single-stepping
Inspecting variables

Fall 2006 Adapted from Java Concepts Companion Slides 61

The Debugger Stopping at a
Breakpoint

Figure 3:
Stopping at a Breakpoint

Fall 2006 Adapted from Java Concepts Companion Slides 62

Inspecting Variables

Figure 4:
Inspecting Variables

Fall 2006 Adapted from Java Concepts Companion Slides 63

Debugging

• Execution is suspended whenever a
breakpoint is reached

• In a debugger, a program runs at full speed
until it reaches a breakpoint

• When execution stops you can:
Inspect variables
Step through the program a line at a time
Or, continue running the program at full speed until it
reaches the next breakpoint

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 64

Debugging

• When program terminates, debugger stops
as well

• Breakpoints stay active until you remove
them

• Two variations of single-step command:
Step Over: skips method calls
Step Into: steps inside method calls

Fall 2006 Adapted from Java Concepts Companion Slides 65

Single-Step Example

• Current line:

• When you step over method calls, you get to the next line:

• However, if you step into method calls, you enter the first line
of the countSyllables method:
public int countSyllables() {
nt count = 0; int end = text.length() - 1;

. . .

}

String input = in.next();
Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " + syllables);

String input = in.next();
Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " + syllables);

Fall 2006 Adapted from Java Concepts Companion Slides 66

Single-Step Example

• However, if you step into method calls, you
enter the first line of the countSyllables
method
public int countSyllables()
{

int count = 0;
int end = text.length() - 1;
. . .

}

Fall 2006 Adapted from Java Concepts Companion Slides 67

Self Check

1. In the debugger, you are reaching a call to
System.out.println. Should you step
into the method or step over it?

2. In the debugger, you are reaching the
beginning of a long method with a couple
of loops inside. You want to find out the
return value that is computed at the end of
the method. Should you set a breakpoint,
or should you step through the method?

Fall 2006 Adapted from Java Concepts Companion Slides 68

Answers

1. You should step over it because you are
not interested in debugging the internals of
the println method.

2. You should set a breakpoint. Stepping
through loops can be tedious.

Fall 2006 Adapted from Java Concepts Companion Slides 69

Sample Debugging Session

• Word class counts syllables in a word

• Each group of adjacent vowels (a, e, i, o, u, y)
counts as one syllable

• However, an e at the end of a word doesn't
count as a syllable

• If algorithm gives count of 0, increment to 1

• Constructor removes non-letters at
beginning and end

Fall 2006 Adapted from Java Concepts Companion Slides 70

File Word.java

01: /**
02: This class describes words in a document.
03: */
04: public class Word
05: {
06: /**
07: Constructs a word by removing leading and trailing non-
08: letter characters, such as punctuation marks.
09: @param s the input string
10: */
11: public Word(String s)
12: {
13: int i = 0;
14: while (i < s.length() && !Character.isLetter(s.charAt(i)))
15: i++;
16: int j = s.length() - 1;
17: while (j > i && !Character.isLetter(s.charAt(j)))
18: j--;

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 71

File Word.java
19: text = s.substring(i, j);
20: }
21:
22: /**
23: Returns the text of the word, after removal of the
24: leading and trailing non-letter characters.
25: @return the text of the word
26: */
27: public String getText()
28: {
29: return text;
30: }
31:
32: /**
33: Counts the syllables in the word.
34: @return the syllable count
35: */ Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 72

File Word.java

36: public int countSyllables()
37: {
38: int count = 0;
39: int end = text.length() - 1;
40: if (end < 0) return 0; // The empty string has no

// syllables
41:
42: // An e at the end of the word doesn't count as a vowel
43: char ch = Character.toLowerCase(text.charAt(end));
44: if (ch == 'e') end--;
45:
46: boolean insideVowelGroup = false;
47: for (int i = 0; i <= end; i++)
48: {
49: ch = Character.toLowerCase(text.charAt(i));
50: String vowels = "aeiouy";
51: if (vowels.indexOf(ch) >= 0)
52: {

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 73

File Word.java
53: // ch is a vowel
54: if (!insideVowelGroup)
55: {
56: // Start of new vowel group
57: count++;
58: insideVowelGroup = true;
59: }
60: }
61: }
62:
63: // Every word has at least one syllable
64: if (count == 0)
65: count = 1;
66:
67: return count;
68: }
69:
70: private String text;
71: }

Fall 2006 Adapted from Java Concepts Companion Slides 74

File WordTester.java
01: import java.util.Scanner;
02:
03: /**
04: This program tests the countSyllables method of the Word

// class.
05: */
06: public class WordTester
07: {
08: public static void main(String[] args)
09: {
10: Scanner in = new Scanner(System.in);
11:
12: System.out.println("Enter a sentence ending in a

// period.");
13:
14: String input;
15: do
16: { Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 75

File WordTester.java
17: input = in.next();
18: Word w = new Word(input);
19: int syllables = w.countSyllables();
20: System.out.println("Syllables in " + input + ": "
21: + syllables);
22: }
23: while (!input.endsWith("."));
24: }
25: }

Fall 2006 Adapted from Java Concepts Companion Slides 76

Debug the Program
• Buggy output (for input "hello yellow
peach"):

• Set breakpoint in first line of countSyllables
of Word class

• Start program, supply input. Program stops at
breakpoint

• Method checks if final letter is 'e'
Continued…

Syllables in hello: 1
Syllables in yellow: 1
Syllables in peach: 1

Fall 2006 Adapted from Java Concepts Companion Slides 77

Debug the Program

Figure 5:
Debugging the CountSyllables Method

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 78

Debug the Program

• Check if this works: step to line where check
is made and inspect variable ch

• Should contain final letter but contains 'l'

Fall 2006 Adapted from Java Concepts Companion Slides 79

More Problems Found

Figure 6:
The Current Values of the Local and Instance Variables Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 80

More Problems Found

• end is set to 3, not 4

• text contains "hell", not "hello"

• No wonder countSyllables returns 1

• Culprit is elsewhere

• Can't go back in time

• Restart and set breakpoint in Word
constructor

Fall 2006 Adapted from Java Concepts Companion Slides 81

Debugging the Word Constructor

• Supply "hello" input again

• Break past the end of second loop in
constructor

• Inspect i and j

• They are 0 and 4–makes sense since the
input consists of letters

• Why is text set to "hell"?

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 82

Debugging the Word Constructor

• Off-by-one error: Second parameter of
substring is the first position not to include

• text = substring(i, j);
should be
text = substring(i, j + 1);

Fall 2006 Adapted from Java Concepts Companion Slides 83

Debugging the Word Constructor

Figure 7:
Debugging the Word
Constructor

Fall 2006 Adapted from Java Concepts Companion Slides 84

Another Error
• Fix the error

• Recompile

• Test again:

• Oh no, it's still not right

Syllables in hello: 1
Syllables in yellow: 1
Syllables in peach: 1

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 85

Another Error
• Start debugger

• Erase all old breakpoints and set a
breakpoint in countSyllables method

• Supply input "hello"

Fall 2006 Adapted from Java Concepts Companion Slides 86

Debugging CountSyllables (again)
• Break in the beginning of countSyllables.

Then, single-step through loop
boolean insideVowelGroup = false;
for (int i = 0; i <= end; i++)
{

ch = Character.toLowerCase(text.charAt(i));
if ("aeiouy".indexOf(ch) >= 0)
{

// ch is a vowel
if (!insideVowelGroup)
{

// Start of new vowel group
count++;
insideVowelGroup = true;

}
}

}

Fall 2006 Adapted from Java Concepts Companion Slides 87

Debugging CountSyllables (again)

• First iteration ('h'): skips test for vowel

• Second iteration ('e'): passes test,
increments count

• Third iteration ('l'): skips test

• Fifth iteration ('o'): passes test, but second
if is skipped, and count is not incremented

Fall 2006 Adapted from Java Concepts Companion Slides 88

Fixing the Bug

• insideVowelGroup was never reset to false

• Fix

if ("aeiouy".indexOf(ch) >= 0)
{

. . .
}
else insideVowelGroup = false;

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 89

Fixing the Bug

• Retest: All test cases pass

• Is the program now bug-free? The debugger
can't answer that.

Syllables in hello: 2
Syllables in yellow: 2
Syllables in peach.: 1

Fall 2006 Adapted from Java Concepts Companion Slides 90

Self Check

1. What caused the first error that was found
in this debugging session?

2. What caused the second error? How was it
detected?

Fall 2006 Adapted from Java Concepts Companion Slides 91

Answers

1. The programmer misunderstood the
second parameter of the substring
method–it is the index of the first character
not to be included in the substring.

2. The second error was caused by failing to
reset insideVowelGroup to false at the
end of a vowel group. It was detected by
tracing through the loop and noticing that
the loop didn't enter the conditional
statement that increments the vowel count.

Fall 2006 Adapted from Java Concepts Companion Slides 92

The First Bug

Figure 8:
The First Bug

Fall 2006 Adapted from Java Concepts Companion Slides 93

Therac-25 Facility

Figure 9:
Typical Therac-25 Facility

