
ICOM 4029 Compiler Writing Handout 5

Fall 2004 page 1 of 7

Programming Assignment V1
A Code Generator for COOL

PART A: Due November 22, 2007

PART B: Due December 6, 2007

1. Introduction
In this assignment you will implement a code generator for Cool. This assignment is the end of the line:
when successfully completed, you will have a fully functional Cool compiler. The code generator makes
use of the AST constructed in PA3 and static analysis performed in PA4. Your code generator should
produce MIPS assembly code that faithfully implements any correct Cool program. There is no error
recovery in code generation—all erroneous Cool programs have been detected by the front-end phases of
the compiler.

As with the static analysis assignment, this assignment has considerable room for design decisions. Your
program is correct if the code it generates works correctly; how you achieve that goal is up to you. We
will suggest certain conventions that we believe will make your life easier, but you don’t have to take our
advice. As always, explain and justify your design decisions in the README file. This assignment is
comparable in size and difficulty to the previous programming assignment. Start early!

2. Files and Directories
Create a subdirectory named PA5 (mkdir PA5) and change (cd PA5) to it. To get the project files,
type:

gmake -f ~icom4029/cool/assignments/PA5J/Makefile source

This will create several symbolic links in the current directory. You should not edit the files pointed to by
these links. In fact, if you make and modify private copies of these files, you may find it impossible to
complete the assignment. See the instructions in the README file.

• CgenSupport.java
This file contains general support code for the code generator. You will find a number of handy functions
here. Modify the file as you see fit, but don’t change anything that’s already there.

• CgenClassTable.java and CgenNode.java
These files provide an implementation of the inheritance graph for the code generator. You will need to
complete CgenClassTable in order to build your code generator.

• StringSymbol.java, IntSymbol.java, and BoolConst.java
These files provide support for Cool constants. You will need to complete the method for generating
constant definitions.

• cool-tree.java
This file contains the definitions for the AST nodes. You will need to add code generation routines for

1 This programming assignment is the same one used in the spring 2003 CS 164 course at UC Berkeley. Recycled
with permission from Professor George Necula.

ICOM 4029 Compiler Writing Handout 5

Fall 2004 page 2 of 7

Cool expressions in this file. The code generator is invoked by calling method cgen() of class program.
You may add new methods, but do not modify the existing declarations.

• TreeConstants.java
As before, this file defines some useful symbol constants. Feel free to add your own as you see fit.

• example.cl
This file should contain a test program of your own design. Test as many features of the code generator as
you can manage to fit into one file.

• README
This file will contain the write-up for your assignment. It is critical that you explain design decisions, how
your code is structured, and why you believe your design is a good one (i.e., why it leads to a correct and
robust program). It is part of the assignment to explain things in text as well as to comment your code.

As usual, there are other files used in the assignment that are symbolically linked to your directory or are
included from ˜icom4029/cool/include and ˜icom4029/cool/src. You should not modify
these files. Almost all of these files have been described in previous assignments.
Important: All software supplied with this assignment is supported on Solaris SPARC, Solaris x86, and
Linux x86 machines. Remember to run gmake clean if you switch architectures.

3. Designing and Testing the Code Generator
You will need a working scanner, parser, and semantic analyzer to test your code generator analyzer. You
may use either your own components or the components from coolc. By default, the coolc
components are used. To change that, replace the lexer and/or parser and/or semant executable
(which are symbolic links in your project directory) with your own scanner/parser. Even if you use your
own components, it is wise to test your code generator with the coolc scanner, parser, and semantic
analyzer at least once, because we will grade your project using coolc’s version of the other phases.

You will run your code generator using mycoolc, a shell script that “glues” together the generator with
the rest of compiler phases. Note that mycoolc takes a -c flag for debugging the code generator; using
this flag merely causes cgen_debug (a static field of class Flags) to be set. Adding the actual code to
produce useful debugging information is up to you. See the project README for details.

You do not need to generate the same code as coolc. Coolc includes a very simple register allocator
and other small changes that are not required for this assignment. The only requirement is to generate
code that runs correctly with our runtime system.

There are many possible ways to write the code generator. One reasonable strategy is to perform code
generation in two passes. The first pass decides the object layout for each class, particularly the offset at
which each attribute is stored in an object. Using this information, the second pass recursively walks each
feature and generates stack machine code for each expression.

There are a number of things you must keep in mind while designing your code generator:

• Your code generator must work correctly with the Cool runtime system, which is explained in the
Cool Tour manual.

• You should have a clear picture of the runtime semantics of Cool programs. The semantics are

ICOM 4029 Compiler Writing Handout 5

Fall 2004 page 3 of 7

described informally in the first part of the CoolAid, and a precise description of how Cool programs
should behave is given in Section 13 of the manual.

• You should understand the MIPS instruction set. An overview of MIPS operations is given in the

spim documentation, which is on the class Web page.

• You should decide what invariants your generated code will observe and expect; i.e., what registers

will be saved, which might be overwritten, etc. You may also find it useful to refer to information on
code generation in the lecture notes and portions of the text, primarily ASU Chapter 9.

4. Spim and XSpim
You will find spim and xspim useful for debugging your generated code. xspim works like spim in
that it lets you run MIPS assembly programs. However, it has many features that allow you to examine
the virtual machine’s state, including the memory locations, registers, data segment, and code segment of
the program. You can also set breakpoints and single step your program. Look at the documentation for
spim/xspim in the course reader or in the course web page.

Warning: One thing that makes debugging with spim difficult is that spim is an interpreter for
assembly code and not a true assembler. If your code or data definitions refer to undefined labels, the
error shows up only if the executing code actually refers to such a label. Moreover, an error is reported
only for undefined labels that appear in the code section of your program. If you have constant data
definitions that refer to undefined labels, spim won’t tell you anything. It will just assume the value 0 for
such undefined labels.

5. Details and Hints
The program starts by calling method cgen()of class program in cool-tree.java. Class
CgenClassTable’s constructor is called by the cgen() method of class program. The constructor
“installs” or creates objects for all the classes, adds them to the SymbolTable (CgenClassTable
extends SymbolTable, so it’s in the class itself) and builds the inheritance tree. The inheritance tree is
stored in a Vector named nds, which is a member of class CgenClassTable and is composed of
elements of type CgenNode. It then calls the code() function which is the one that actually does the
real code generation work. It generates code for global data and constants (ints, bools, and strings).
Then, the Class Names Table, Objects Table, Dispatch Tables, Object Prototypes, Class Initializations
and the Processing of Methods should all be done from here.

The generated code is implemented by a stack machine in which each sub-expression returns its result in
the accumulator register ($a0), uses the stack for temporary values and must leave the stack the same as it
was before (see the class notes for more details).

The Class Names Table includes pointers to all the names of the classes.
For example:
class_nameTab:
 .word str_const12 # Object
 .word str_const13 # IO
 .word str_const14 # Int
 .word str_const15 # Bool
 .word str_const16 # String
 .word str_const17 # A
 .word str_const18 # B

ICOM 4029 Compiler Writing Handout 5

Fall 2004 page 4 of 7

 .word str_const19 # Main

The Objects Table contains pointers to the object prototype and init method of each class.
For Example:
class_objTab:
 .word Object_protObj
 .word Object_init
 .word IO_protObj
 .word IO_init
 .word Int_protObj
 .word Int_init
 .word Bool_protObj
 .word Bool_init
 .word String_protObj
 .word String_init
 .word A_protObj
 .word A_init
 .word B_protObj
 .word B_init
 .word Main_protObj
 .word Main_init

Dispatch Tables contain the pointers to the different functions defined for each class: those inherited from
its parent(s) and those defined in the class itself.
For Example:
A_dispTab:
 .word Object.abort
 .word Object.type_name
 .word Object.copy
 .word A.foobar
 .word A.helloString

Object prototypes are used as an “empty” or “dummy” version of an object of each class.

For Example:
B_protObj:
 .word 5
 .word 4
 .word B_dispTab
 .word int_const2
 .word -1

5 is the Class Tag (integer identifying the class of the object), 4 is the object’s size (4 words in this case),
B_dispTab is the pointer to B’s dispatch table, int_const2 represents the default value for B’s first
and only attribute (which is an Int, and thus has an initial value of 0 which is the value at
int_const2). If B had any other attributes they would use subsequent slots as needed. The last slot
contains a -1; this represents the end of an object and is used by the garbage collector. Other objects
created during the program’s execution also follow this format. Layouts of subclasses extend their parent
class’ layout.

A Class Initialization gives the code for the init method and attributes’ initializations used for

ICOM 4029 Compiler Writing Handout 5

Fall 2004 page 5 of 7

initializing objects with that class as its type.

The Processing of Methods is where the code for each class’ methods is generated. Method declarations
(including initializations) and method dispatches should follow an Activation Record (AR) convention
which is explained in the class notes. Methods for the basic classes are already defined in the runtime
system (or the trap.handler file).

Arithmetic operations require that a new copy of an int_const be created to store the result, because
int_const’s defined in the program itself must not be overwritten. The creation of new objects is
required by the following expressions: plus, sub, mul, divide, neg, “new_”, and lets with no initialization.
For these cases, you should use the function Object.copy, which creates a separate copy of the object
pointed to by the accumulator (for example, B_protObj or int_constX) and stores it in the
accumulator.

The CgenSupport class contains various useful “emit” functions for generating the assembly code for
the MIPS instructions.
For example:
CgenSupport.emitLoadString(CgenSupport.ACC, symbol, s);

Generates the following assembly code:
la $a0 str_const0

Where str_const0 is the string represented by StringSymbol symbol (which can be obtained
from the string table) and s is a PrintStream, which in our case is the output file.

When in doubt, create a short and simple COOL program and look at coolc’s output MIPS assembly
program; but remember that, as stated above, the assembly code generated by your code generator may
not necessarily be the same as that generated by coolc.

Even if there is no error recovery or correction, your program must still detect runtime errors (like a
dispatch to void) which are explained in the Cool Manual, and generate the code necessary for the output
MIPS program to abort execution. Void is represented by CgenSupport.ZERO or the $zero register.

6. Work Division
PART A
i. Deliverables

On the first part your program is expected to do the following:
• Set the Int, String and Bool class tags. (0 and 1 are for Object and IO, respectively)
• Emit (generate code for) Class Names Table (class_nameTab)
• Emit Class Objects Table (class_objTab)
• Emit Classes’ Dispatch Tables
• Emit Object Prototypes
• Emit Classes’ Initializations
• Emit Classes’ Methods (assuming they only include the expressions below)
• Emit the code for the following expressions:

o Integer Constant ‘int_const’
o Boolean Constant ‘bool_const’
o String Constant ‘string_const’
o Assignment ‘assign’

ICOM 4029 Compiler Writing Handout 5

Fall 2004 page 6 of 7

o Addition ‘plus’
o Subtraction ‘sub’
o Multiplication ‘mul’
o Division ‘divide’
o Instantiation ‘new_’

Ignore any other expressions that are not in this part. The test cases will not include any expressions
that are not of PART A.

ii. Turning In PART A

You must perform the following instructions for turning it in:

1. Make sure your code is in cool-tree.java, CGenClassTable.java, and

TreeConstants.java and that it compiles and works.

2. Your test program should be in example.cl.

3. Include any relevant comments in the README file and answer any questions that appear in it.

4. Make sure everything (cool-tree.java, ClassTable.java, TreeConstants.java,

example.cl, README) is in a directory called PA5.

5. Create a tar-gzipped file PA5.tar.gz containing the PA5 directory:

tar –czf PA5.tar.gz PA5

6. Submit the file (before November 22, 2004 11:59pm):
~icom4029/submit/submit 6 PA5.tar.gz

You must use any of the group members’ class accounts when submitting the assignment. You can
submit multiple times; if you do so, any previous submissions will be overwritten (until after the
project’s deadline).

PART B
i. Deliverables

On the second part your program is expected to do the following:
• Emit the code for the following expressions:

o Object Variable ‘object’
o Case ‘typ_case’
o Static Dispatch ‘static_dispatch’
o Dispatch ‘dispatch’
o If-Then-Else-Fi ‘cond’
o While-Loop-Pool ‘loop’
o Block ‘block’
o Let ‘let’
o Negation ‘neg’
o Less than ‘lt’
o Equality ‘eq’
o Less than or equals ‘leq’
o Complement (Not) ‘comp’
o Void Test ‘isvoid’

• Generate working MIPS assembly code for any correct Cool program.

ICOM 4029 Compiler Writing Handout 5

Fall 2004 page 7 of 7

(i.e. anything else that may be missing)

ii. Turning In PART B

Follow the same steps as PART A above except for step 6:

6. Submit the file (before December 6, 2004 11:59pm):
~icom4029/submit/submit 7 PA4.tar.gz

GOOD LUCK!

You will need it! 

