
ICOM 4015 Fall 2008 Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ICOM 4015: Advanced
Programming

Lecture 5

Chapter Five: Decisions

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Chapter Five: Decisions

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  To be able to implement decisions using if statements

•  To understand how to group statements into blocks

•  To learn how to compare integers, floating-point numbers,
strings, and objects

•  To recognize the correct ordering of decisions in multiple
branches

•  To program conditions using Boolean operators and variables

•  To understand the importance of test coverage

Chapter Goals

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  The if statement lets a program carry out different actions
depending on a condition

 If (amount <= balance)
 balance = balance – amount;

The if Statement

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

If (amount <= balance)
balance = balance – amount;
else
balance = balance – OVERDRAFT_PENALTY

The if/else Statement

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Simple statement

 balance = balance - amount;

•  Compound statement
 if (balance >= amount) balance = balance - amount;

 Also

 while, for, etc. (loop statements – Chapter 6)

•  Block statement
 {
 double newBalance = balance - amount;
 balance = newBalance;
 }

Statement Types

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

if(condition)
 statement
if (condition)
 statement1
else

Example:
if (amount <= balance)
 balance = balance - amount;
if (amount <= balance)
 balance = balance - amount;

else

Purpose:

To execute a statement when a condition is true or false.

Syntax 5.1 The if Statement

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

{
 statement1
 statement2
 . . .
}

Example:
{
 double newBalance = balance - amount;
 balance = newBalance;
}

Purpose:

To group several statements together to form a single statement.

Syntax 5.2 Block Statement

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why did we use the condition amount <= balance and not amount
< balance in the example for the if/else statement?

 Answer: If the withdrawal amount equals the balance, the result
 should be a zero balance and no penalty.

Self Check 5.1

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What is logically wrong with the statement
if (amount <= balance)
 newBalance = balance - amount;
 balance = newBalance;

and how do you fix it?

 Answer: Only the first assignment statement is part of the if
 statement. Use braces to group both assignment statements
 into a block statement.

Self Check 5.2

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Relational operators compare values

Java Math Notation Description

> > Greater than

>= ≥ Greater than or equal

< < Less than

<= ≤ Less than or equal

== = Equal

!= ≠ Not equal

•  The == denotes equality testing
 a = 5; // Assign 5 to a
 if (a == 5) . . . // Test whether a equals 5

Comparing Values: Relational Operators

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Consider this code:
 double r = Math.sqrt(2);
 double d = r * r -2;
 if (d == 0)
 System.out.println("sqrt(2)squared minus 2 is 0");
 else
 System.out.println("sqrt(2)squared minus 2 is not 0
 but " + d);

•  It prints:
sqrt(2)squared minus 2 is not 0 but 4.440892098500626E-16

Comparing Floating-Point Numbers

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  To avoid roundoff errors, don't use == to compare floating-point
numbers

•  To compare floating-point numbers test whether they are close
enough:

 |x - y| ≤ ε
 final double EPSILON = 1E-14;
 if (Math.abs(x - y) <= EPSILON)
 // x is approximately equal to y

•  ε is a small number such as 10-14

Comparing Floating-Point Numbers

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Don't use == for strings!

 if (input == "Y") // WRONG!!!

•  Use equals method:

 if (input.equals("Y"))

•  == tests identity, equals tests equal contents

•  Case insensitive test ("Y" or "y")
 if (input.equalsIgnoreCase("Y"))

•  s.compareTo(t) < 0 means:
 s comes before t in the dictionary

Continued

Comparing Strings

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  "car" comes before "cargo"

•  All uppercase letters come before lowercase:
"Hello" comes before "car"

Comparing Strings (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Lexicographic Comparison

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  == tests for identity, equals for identical content

•  Rectangle box1 = new Rectangle(5, 10, 20, 30);
 Rectangle box2 = box1;

•  Rectangle box3 = new Rectangle(5, 10, 20, 30);
 box1 != box3,

•  but box1.equals(box3)
 box1 == box2

•  Caveat: equals must be defined for the class

Comparing Objects

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Object Comparison

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  null reference refers to no object
 String middleInitial = null; // Not set
 if (. . .)
 middleInitial = middleName.substring(0, 1);

•  Can be used in tests:
 if (middleInitial == null)
 System.out.println(firstName + " " + lastName);
 else
 System.out.println(firstName + " " + middleInitial +
 ". " + lastName);

•  Use ==, not equals, to test for null

•  null is not the same as the empty string ""

Testing for null

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What is the value of s.length() if s is
a.  the empty string ""?
b.  the string " " containing a space?
c.  null?

 Answer: (a) 0; (b) 1; (c) an exception is thrown.

Self Check 5.3

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Which of the following comparisons are syntactically incorrect? Which of
them are syntactically correct, but logically questionable?
String a = "1";
String b = "one";
double x = 1;
double y = 3 * (1.0 / 3);

a.  a == "1"
b.  a == null
c.  a.equals("")
d.  a == b
e.  a == x
f.  x == y
g.  x - y == null
h.  x.equals(y)

 Answer: Syntactically incorrect: e, g, h. Logically questionable:
 a, d, f.

Self Check 5.4

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 if (condition1)
 statement1;
 else if (condition2)
 statement2;
 . . .
 else
 statement4;

•  The first matching condition is executed

•  Order matters
 if (richter >= 0) // always passes
 r = "Generally not felt by people";
 else if (richter >= 3.5) // not tested
 r = "Felt by many people, no destruction";
 . . .

Multiple Alternatives: Sequences of Comparisons

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Don't omit else
 if (richter >= 8.0)
 r = "Most structures fall";
 if (richter >= 7.0) // omitted else--ERROR
 r = "Many buildings destroyed

Multiple Alternatives: Sequences of Comparisons (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: A class that describes the effects of an earthquake.
03: */
04: public class Earthquake
05: {
06: /**
07: Constructs an Earthquake object.
08: @param magnitude the magnitude on the Richter scale
09: */
10: public Earthquake(double magnitude)
11: {
12: richter = magnitude;
13: }
14:
15: /**
16: Gets a description of the effect of the earthquake.
17: @return the description of the effect
18: */
19: public String getDescription()
20: {

Continued

ch05/quake/Earthquake.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

21: String r;
22: if (richter >= 8.0)
23: r = "Most structures fall";
24: else if (richter >= 7.0)
25: r = "Many buildings destroyed";
26: else if (richter >= 6.0)
27: r = "Many buildings considerably damaged, some collapse";
28: else if (richter >= 4.5)
29: r = "Damage to poorly constructed buildings";
30: else if (richter >= 3.5)
31: r = "Felt by many people, no destruction";
32: else if (richter >= 0)
33: r = "Generally not felt by people";
34: else
35: r = "Negative numbers are not valid";
36: return r;
37: }
38:
39: private double richter;
40: }

ch05/quake/Earthquake.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.util.Scanner;
02:
03: /**
04: This program prints a description of an earthquake of a given
magnitude.
05: */
06: public class EarthquakeRunner
07: {
08: public static void main(String[] args)
09: {
10: Scanner in = new Scanner(System.in);
11:
12: System.out.print("Enter a magnitude on the Richter scale: ");
13: double magnitude = in.nextDouble();
14: Earthquake quake = new Earthquake(magnitude);
15: System.out.println(quake.getDescription());
16: }
17: }

Output:
Enter a magnitude on the Richter scale: 7.1 Many buildings destroyed

ch05/quake/EarthquakeRunner.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Branch inside another branch
 if (condition1)
 {
 if (condition1a)
 statement1a;
 else
 statement1b;
 }
 else
 statement2;

Multiple Alternatives: Nested Branches

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

If your filing status is Single If your filing status is Married

Tax Bracket Percentage Tax Bracket Percentage

$0 . . . $21,450 15% 0 . . . $35,800 15%

Amount over $21,450, up to $51,900 28% Amount over $35,800, up to $86,500 28%

Amount over $51,900 31% Amount over $86,500 31%

Tax Schedule

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Compute taxes due, given filing status and income figure:
(1) branch on the filing status, (2) for each filing status, branch
on income level

•  The two-level decision process is reflected in two levels of if
 statements

•  We say that the income test is nested inside the test for filing
 status

Continued

Nested Branches

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Nested Branches (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: A tax return of a taxpayer in 1992.
03: */
04: public class TaxReturn
05: {
06: /**
07: Constructs a TaxReturn object for a given income and
08: marital status.
09: @param anIncome the taxpayer income
10: @param aStatus either SINGLE or MARRIED
11: */
12: public TaxReturn(double anIncome, int aStatus)
13: {
14: income = anIncome;
15: status = aStatus;
16: }
17:
18: public double getTax()
19: {
20: double tax = 0;
21:
22: if (status == SINGLE)
23: {

Continued

ch05/tax/TaxReturn.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

24: if (income <= SINGLE_BRACKET1)
25: tax = RATE1 * income;
26: else if (income <= SINGLE_BRACKET2)
27: tax = RATE1 * SINGLE_BRACKET1
28: + RATE2 * (income - SINGLE_BRACKET1);
29: else
30: tax = RATE1 * SINGLE_BRACKET1
31: + RATE2 * (SINGLE_BRACKET2 - SINGLE_BRACKET1)
32: + RATE3 * (income - SINGLE_BRACKET2);
33: }
34: else
35: {
36: if (income <= MARRIED_BRACKET1)
37: tax = RATE1 * income;
38: else if (income <= MARRIED_BRACKET2)
39: tax = RATE1 * MARRIED_BRACKET1
40: + RATE2 * (income - MARRIED_BRACKET1);
41: else
42: tax = RATE1 * MARRIED_BRACKET1
43: + RATE2 * (MARRIED_BRACKET2 - MARRIED_BRACKET1)
44: + RATE3 * (income - MARRIED_BRACKET2);
45: }
46:

Continued

ch05/tax/TaxReturn.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

47: return tax;
48: }
49:
50: public static final int SINGLE = 1;
51: public static final int MARRIED = 2;
52:
53: private static final double RATE1 = 0.15;
54: private static final double RATE2 = 0.28;
55: private static final double RATE3 = 0.31;
56:
57: private static final double SINGLE_BRACKET1 = 21450;
58: private static final double SINGLE_BRACKET2 = 51900;
59:
60: private static final double MARRIED_BRACKET1 = 35800;
61: private static final double MARRIED_BRACKET2 = 86500;
62:
63: private double income;
64: private int status;
65: }

ch05/tax/TaxReturn.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.util.Scanner;
02:
03: /**
04: This program calculates a simple tax return.
05: */
06: public class TaxCalculator
07: {
08: public static void main(String[] args)
09: {
10: Scanner in = new Scanner(System.in);
11:
12: System.out.print("Please enter your income: ");
13: double income = in.nextDouble();
14:
15: System.out.print("Are you married? (Y/N) ");
16: String input = in.next();
17: int status;
18: if (input.equalsIgnoreCase("Y"))
19: status = TaxReturn.MARRIED;
20: else
21: status = TaxReturn.SINGLE;
22: Continued

ch05/tax/TaxCalculator.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:
Please enter your income: 50000
Are you married? (Y/N) N
Tax: 11211.5

23: TaxReturn aTaxReturn = new TaxReturn(income, status);
24:
25: System.out.println("Tax: "
26: + aTaxReturn.getTax());
27: }
28: }

ch05/tax/TaxCalculator.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The if/else/else statement for the earthquake strength first
tested for higher values, then descended to lower values. Can you
reverse that order?

 Answer: Yes, if you also reverse the comparisons:
if (richter < 3.5) r = "Generally not felt by people";
else if (richter < 4.5) r = "Felt by many people, no
destruction"; else if (richter < 6.0) r = "Damage to
poorly constructed buildings"; .. .

Self Check 5.5

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Some people object to higher tax rates for higher incomes,
claiming that you might end up with less money after taxes when
you get a raise for working hard. What is the flaw in this
argument?

Answer: The higher tax rate is only applied on the income in the
higher bracket. Suppose you are single and make $51,800.
Should you try to get a $200 raise? Absolutely–you get to keep
72% of the first $100 and 69% of the next $100.

Self Check 5.6

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 George Boole (1815-1864): pioneer in the study of logic

•  value of expression amount < 1000 is true or false.

•  boolean type: one of these 2 truth values

Using Boolean Expressions: The boolean Type

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  A predicate method returns a boolean value

 public boolean isOverdrawn()
 {
 return balance < 0;
 }

•  Use in conditions

 if (harrysChecking.isOverdrawn())

•  Useful predicate methods in Character class:
 isDigit
 isLetter
 isUpperCase
 isLowerCase

Continued

Using Boolean Expressions: Predicate Method

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  if (Character.isUpperCase(ch)) . . .

•  Useful predicate methods in Scanner class:
hasNextInt() and hasNextDouble()

 if (in.hasNextInt()) n = in.nextInt();

Using Boolean Expressions: Predicate Method (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  && and
•  || or

•  ! not

•  if (0 < amount && amount < 1000) . . .
•  if (input.equals("S") || input.equals("M")) . . .

Using Boolean Expressions: The Boolean Operators

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

&& and || Operators

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

A B A && B

true true true

true false false

false Any false

A B A || B

true Any true

false true true
false false false

A ! A

true false

false true

Truth Tables

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  private boolean married;

•  Set to truth value:
 married = input.equals("M");

•  Use in conditions:
 if (married) . . . else . . . if (!married) . . .

•  Also called flag

•  It is considered gauche to write a test such as
 if (married == true) . . . // Don't

•  Just use the simpler test
 if (married) . . .

Using Boolean Variables

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

When does the statement
system.out.println (x > 0 || x < 0);

print false?

 Answer: When x is zero.

Self Check 5.7

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Rewrite the following expression, avoiding the comparison with
false:
If (character.isDigit(ch) == false) . . .

 Answer: if (!Character. isDigit(ch)) . . .

Self Check 5.8

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Black-box testing: test functionality without consideration of
internal structure of implementation

•  White-box testing: take internal structure into account when
designing tests

•  Test coverage: measure of how many parts of a program have
been tested

•  Make sure that each part of your program is exercised at least
once by one test case
E.g., make sure to execute each branch in at least one test case

Continued

Test Coverage

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Include boundary test cases: legal values that lie at the
boundary of the set of acceptable inputs

•  Tip: write first test cases before program is written completely →
gives insight into what program should do

Test Coverage (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How many test cases do you need to cover all branches of the
getDescription method of the Earthquake class?

Answer: 7.

Self Check 5.9

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Give a boundary test case for the EarthquakeRunner program.
What output do you expect?

 Answer: An input of 0 should yield an output of "Generally not
 felt by people". (If the output is "Negative numbers are not
 allowed", there is an error in the program.)

Self Check 5.10

