
ICOM 4015 Fall 2008 Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ICOM 4015: Advanced
Programming

Lecture 6

Chapter Six: Iteration

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Chapter Six: Iteration

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  To be able to program loops with the while, for, and do
statements

•  To avoid infinite loops and off-by-one errors

•  To understand nested loops

•  To learn how to process input

•  To implement simulations

•  To learn about the debugger

Chapter Goals

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Executes a block of code repeatedly

•  A condition controls how often the loop is executed

 while (condition)
 statement

•  Most commonly, the statement is a block statement (set of
statements delimited by { })

while Loops

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Year Balance

0 $10,000

1 $10,500

2 $11,025

3 $11,576.25

4 $12,155.06

5 $12,762.82

•  Invest $10,000, 5% interest, compounded annually

Calculating the Growth of an Investment

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  When has the bank account reached a particular balance?
 while (balance < targetBalance)
 {
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
 }

Calculating the Growth of an Investment

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: A class to monitor the growth of an investment that
03: accumulates interest at a fixed annual rate.
04: */
05: public class Investment
06: {
07: /**
08: Constructs an Investment object from a starting balance and
09: interest rate.
10: @param aBalance the starting balance
11: @param aRate the interest rate in percent
12: */
13: public Investment(double aBalance, double aRate)
14: {
15: balance = aBalance;
16: rate = aRate;
17: years = 0;
18: }
19:
20: /**
21: Keeps accumulating interest until a target balance has
22: been reached.
23: @param targetBalance the desired balance
24: */

ch06/invest1/Investment.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

25: public void waitForBalance(double targetBalance)
26: {
27: while (balance < targetBalance)
28: {
29: years++;
30: double interest = balance * rate / 100;
31: balance = balance + interest;
32: }
33: }
34:
35: /**
36: Gets the current investment balance.
37: @return the current balance
38: */
39: public double getBalance()
40: {
41: return balance;
42: }
43:
44: /**
45: Gets the number of years this investment has accumulated
46: interest.

ch06/invest1/Investment.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

47: @return the number of years since the start of the investment
48: */
49: public int getYears()
50: {
51: return years;
52: }
53:
54: private double balance;
55: private double rate;
56: private int years;
57: }

ch06/invest1/Investment.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: This program computes how long it takes for an investment
03: to double.
04: */
05: public class InvestmentRunner
06: {
07: public static void main(String[] args)
08: {
09: final double INITIAL_BALANCE = 10000;
10: final double RATE = 5;
11: Investment invest = new Investment(INITIAL_BALANCE, RATE);
12: invest.waitForBalance(2 * INITIAL_BALANCE);
13: int years = invest.getYears();
14: System.out.println("The investment doubled after "
15: + years + " years");
16: }
17: }

ch06/invest1/InvestmentRunner.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:
The investment doubled after 15 years

ch06/invest1/InvestmentRunner.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Animation 6.1 –

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

while Loop Flowchart

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

while (condition)
 statement

Example:
while (balance < targetBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Purpose:

To repeatedly execute a statement as long as a condition is true.

Syntax 6.1 The while Statement

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How often is the statement in the loop
while (false) statement;

executed?

 Answer: Never.

Self Check 6.1

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What would happen if RATE was set to 0 in the main method of the
InvestmentRunner program?

 Answer: The waitForBalance method would never return due to
 an infinite loop.

Self Check 6.2

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  int years = 0;
while (years < 20)

 {
 double interest = balance * rate / 100;
 balance = balance + interest;
 }

•  int years = 20;
while (years > 0)

 {
 years++; // Oops, should have been years–
 double interest = balance * rate / 100;
 balance = balance + interest;
 }

•  Loops run forever – must kill program

Common Error: Infinite Loops

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  int years = 0;
while (balance < 2 * initialBalance)
{
 years++;
 double interest = balance * rate / 100;
 balance = balance + interest;

 }
System.out.println("The investment reached the target

 after " + years + " years.");

Should years start at 0 or 1?

Should the test be < or <=?

Common Error: Off-by-One Errors

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Look at a scenario with simple values:
initial balance: $100
interest rate: 50%
after year 1, the balance is $150
after year 2 it is $225, or over $200
so the investment doubled after 2 years
the loop executed two times, incrementing years each time
Therefore: years must start at 0, not at 1.

•  interest rate: 100%
after one year: balance is 2 * initialBalance
loop should stop
Therefore: must use <

•  Think, don't compile and try at random

Avoiding Off-by-One Error

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Executes loop body at least once:
do
 statement
while (condition);

•  Example: Validate input
double value;
do
{
 System.out.print("Please enter a positive number: ");
 value = in.nextDouble();
}
 while (value <= 0);

do Loops

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Alternative:
boolean done = false;
while (!done)
{
 System.out.print("Please enter a positive number: ");
 value = in.nextDouble();
 if (value > 0) done = true;
}

do Loops (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

do Loop Flowchart

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Spaghetti Code

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  for (initialization; condition; update)
 statement

•  Example:
for (int i = 1; i <= n; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

•  Equivalent to
initialization;
while (condition)
{ statement;
 update; }

for Loops

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Other examples:
for (years = n; years > 0; years--) . . .
for (x = -10; x <= 10; x = x + 0.5) . . .

for Loops (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

for Loop Flowchart

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Animation 6.2 –

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

for (initialization; condition; update)
 statement

Example:
for (int i = 1; i <= n; i++)
{
 double interest = balance * rate / 100;
 balance = balance + interest;
}

Purpose:

To execute an initialization, then keep executing a statement and
updating an expression while a condition is true.

Syntax 6.2 The for Statement

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: A class to monitor the growth of an investment that
03: accumulates interest at a fixed annual rate
04: */
05: public class Investment
06: {
07: /**
08: Constructs an Investment object from a starting balance and
09: interest rate.
10: @param aBalance the starting balance
11: @param aRate the interest rate in percent
12: */
13: public Investment(double aBalance, double aRate)
14: {
15: balance = aBalance;
16: rate = aRate;
17: years = 0;
18: }
19:
20: /**
21: Keeps accumulating interest until a target balance has
22: been reached.

ch06/invest2/Investment.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

23: @param targetBalance the desired balance
24: */
26: {
27: while (balance < targetBalance)
28: {
29: years++;
30: double interest = balance * rate / 100;
31: balance = balance + interest;
32: }
33: }
34:
35: /**
36: Keeps accumulating interest for a given number of years.
37: @param n the number of years
38: */
39: public void waitYears(int n)
40: {
41: for (int i = 1; i <= n; i++)
42: {
43: double interest = balance * rate / 100;
44: balance = balance + interest;

ch06/invest2/Investment.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

45: }
46: years = years + n;
47: }
48:
49: /**
50: Gets the current investment balance.
51: @return the current balance
52: */
53: public double getBalance()
54: {
55: return balance;
56: }
57:
58: /**
59: Gets the number of years this investment has accumulated
60: interest.
61: @return the number of years since the start of the investment
62: */
63: public int getYears()
64: {
65: return years;
66: }

ch06/invest2/Investment.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

67:
68: private double balance;
69: private double rate;
70: private int years;
71: }

ch06/invest2/Investment.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: This program computes how much an investment grows in
03: a given number of years.
04: */
05: public class InvestmentRunner
06: {
07: public static void main(String[] args)
08: {
09: final double INITIAL_BALANCE = 10000;
10: final double RATE = 5;
11: final int YEARS = 20;
12: Investment invest = new Investment(INITIAL_BALANCE, RATE);
13: invest.waitYears(YEARS);
14: double balance = invest.getBalance();
15: System.out.printf("The balance after %d years is %.2f\n",
16: YEARS, balance);
17: }
18: }

Output:
The balance after 20 years is 26532.98

ch06/invest2/InvestmentRunner.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Rewrite the for loop in the waitYears method as a while loop.

 Answer: int i = 1; while (i <= n) { double interest =
 balance * rate / 100; balance = balance + interest;
 i++; }

Self Check 6.3

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Rewrite the for loop in the waitYears method as a while How
many times does the following for loop execute?
for (i = 0; i <= 10; i++)
 System.out.println(i * i);

 Answer: 11 times.

Self Check 6.4

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  A missing semicolon
for (years = 1;
 (balance = balance + balance * rate / 100) <
 targetBalance;
 years++)

 System.out.println(years);

•  A semicolon that shouldn't be there
sum = 0;
for (i = 1; i <= 10; i++);
 sum = sum + i;
System.out.println(sum);

Common Errors: Semicolons

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Create triangle pattern
[]
[][]
[][][]

[][][][]

•  Loop through rows
for (int i = 1; i <= n; i++)

 {
 // make triangle row
 }

•  Make triangle row is another loop
for (int j = 1; j <= i; j++)
 r = r + "[]";
r = r + "\n";

•  Put loops together → Nested loops

Nested Loops

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: This class describes triangle objects that can be displayed
03: as shapes like this:
04: []
05: [][]
06: [][][]
07: */
08: public class Triangle
09: {
10: /**
11: Constructs a triangle.
12: @param aWidth the number of [] in the last row of the triangle.
13: */
14: public Triangle(int aWidth)
15: {
16: width = aWidth;
17: }
18:
19: /**
20: Computes a string representing the triangle.
21: @return a string consisting of [] and newline characters
22: */

ch06/triangle1/Triangle.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

23: public String toString()
24: {
25: String r = "";
26: for (int i = 1; i <= width; i++)
27: {
28: // Make triangle row
29: for (int j = 1; j <= i; j++)
30: r = r + "[]";
31: r = r + "\n";
32: }
33: return r;
34: }
35:
36: private int width;
37: }

ch06/triangle1/Triangle.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: This program prints two triangles.
03: */
04: public class TriangleRunner
05: {
06: public static void main(String[] args)
07: {
08: Triangle small = new Triangle(3);
09: System.out.println(small.toString());
10:
11: Triangle large = new Triangle(15);
12: System.out.println(large.toString());
13: }
14: }

File TriangleRunner.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:
[]
[][]
[][][]

[]
[][]
[][][]
[][][][]
[][][][][]
[][][][][][]
[][][][][][][]
[][][][][][][][] [][][][][][][][]
[] [][][][][][][][][][] [][][][]
[][][][][][][] [][][][][][][][][]
[][][] [][][][][][][][][][][][][]

File TriangleRunner.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output (continued):
[][][][][][][][][][][][][][] [][]
[][][][][][][][][][][][][]

File TriangleRunner.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How would you modify the nested loops so that you print a square
instead of a triangle?

 Answer: Change the inner loop to for (int j = 1; j <=
 width; j++)

Self Check 6.5

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How would you modify the nested loops so that you print a square
instead of a What is the value of n after the following nested
loops?
int n = 0;
for (int i = 1; i <= 5; i++)
 for (int j = 0; j < i; j++)
 n = n + j;

 Answer: 20.

Self Check 6.6

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Sentinel value: Can be used for indicating the end of a data set
•  0 or -1 make poor sentinels; better use Q

System.out.print("Enter value, Q to quit: ");
String input = in.next();
if (input.equalsIgnoreCase("Q"))
 We are done
else

 {
 double x = Double.parseDouble(input);
 . . .
}

Processing Sentinel Values

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Sometimes termination condition of a loop can only be evaluated
in the middle of the loop

•  Then, introduce a boolean variable to control the loop:
 boolean done = false;
 while (!done)
 {
 Print prompt
 String input = read input;
 if (end of input indicated)
 done = true;
 else
 {
 Process input
 }
 }

Loop and a half

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.util.Scanner;
02:
03: /**
04: This program computes the average and maximum of a set
05: of input values.
06: */
07: public class DataAnalyzer
08: {
09: public static void main(String[] args)
10: {
11: Scanner in = new Scanner(System.in);
12: DataSet data = new DataSet();
13:
14: boolean done = false;
15: while (!done)
16: {
17: System.out.print("Enter value, Q to quit: ");
18: String input = in.next();
19: if (input.equalsIgnoreCase("Q"))
20: done = true;

ch06/dataset/DataAnalyzer.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

21: else
22: {
23: double x = Double.parseDouble(input);
24: data.add(x);
25: }
26: }
27:
28: System.out.println("Average = " + data.getAverage());
29: System.out.println("Maximum = " + data.getMaximum());
30: }
31: }

ch06/dataset/DataAnalyzer.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: Computes the average of a set of data values.
03: */
04: public class DataSet
05: {
06: /**
07: Constructs an empty data set.
08: */
09: public DataSet()
10: {
11: sum = 0;
12: count = 0;
13: maximum = 0;
14: }
15:
16: /**
17: Adds a data value to the data set
18: @param x a data value
19: */
20: public void add(double x)
21: {

ch06/dataset/DataSet.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

22: sum = sum + x;
23: if (count == 0 || maximum < x) maximum = x;
24: count++;
25: }
26:
27: /**
28: Gets the average of the added data.
29: @return the average or 0 if no data has been added
30: */
31: public double getAverage()
32: {
33: if (count == 0) return 0;
34: else return sum / count;
35: }
36:
37: /**
38: Gets the largest of the added data.
39: @return the maximum or 0 if no data has been added
40: */

ch06/dataset/DataSet.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:
Enter value, Q to quit: 10
Enter value, Q to quit: 0
Enter value, Q to quit: -1
Enter value, Q to quit: Q
Average = 3.0
Maximum = 10.0

41: public double getMaximum()
42: {
43: return maximum;
44: }
45:
46: private double sum;
47: private double maximum;
48: private int count;
49: }

ch06/dataset/DataSet.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why does the DataAnalyzer class call in.next and not
in.nextDouble?

 Answer: Because we don't know whether the next input is a
 number or the letter Q.

Self Check 6.7

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Would the DataSet class still compute the correct maximum if you
simplified the update of the maximum field in the add method to
the following statement?
if (maximum < x) maximum = x;

 Answer: No. If all input values are negative, the maximum is
 also negative. However, the maximum field is initialized with 0.
 With this simplification, the maximum would be falsely computed
 as 0.

Self Check 6.8

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  In a simulation, you repeatedly generate random numbers and
use them to simulate an activity

•  Random number generator
 Random generator = new Random(); int n =
 generator.nextInt(a); // 0 < = n < a double x =

 generator.nextDouble(); // 0 <= x < 1

•  Throw die (random number between 1 and 6)
 int d = 1 + generator.nextInt(6);

Random Numbers and Simulations

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.util.Random;
02:
03: /**
04: This class models a die that, when cast, lands on a random
05: face.
06: */
07: public class Die
08: {
09: /**
10: Constructs a die with a given number of sides.
11: @param s the number of sides, e.g. 6 for a normal die
12: */
13: public Die(int s)
14: {
15: sides = s;
16: generator = new Random();
17: }
18:
19: /**
20: Simulates a throw of the die
21: @return the face of the die
22: */

ch06/random1/Die.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

23: public int cast()
24: {
25: return 1 + generator.nextInt(sides);
26: }
27:
28: private Random generator;
29: private int sides;
30: }

ch06/random1/Die.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: This program simulates casting a die ten times.
03: */
04: public class DieSimulator
05: {
06: public static void main(String[] args)
07: {
08: Die d = new Die(6);
09: final int TRIES = 10;
10: for (int i = 1; i <= TRIES; i++)
11: {
12: int n = d.cast();
13: System.out.print(n + " ");
14: }
15: System.out.println();
16: }
17: }

ch06/random1/DieSimulator.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:

 6 5 6 3 2 6 3 4 4 1

 Second Run:
 3 2 2 1 6 5 3 4 1 2

ch06/random1/DieSimulator.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Buffon Needle Experiment

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Buffon Needle Experiment

Needle Position

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Needle length = 1, distance between lines = 2

•  Generate random ylow between 0 and 2

•  Generate random angle α between 0 and 180 degrees

•  yhigh = ylow + sin(α)

•  Hit if yhigh ≥ 2

Needle Position

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.util.Random;
02:
03: /**
04: This class simulates a needle in the Buffon needle experiment.
05: */
06: public class Needle
07: {
08: /**
09: Constructs a needle.
10: */
11: public Needle()
12: {
13: hits = 0;
14: tries = 0;
15: generator = new Random();
16: }
17:
18: /**
19: Drops the needle on the grid of lines and
20: remembers whether the needle hit a line.
21: */

ch06/random2/Needle.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

22: public void drop()
23: {
24: double ylow = 2 * generator.nextDouble();
25: double angle = 180 * generator.nextDouble();
26:
27: // Computes high point of needle
28:
29: double yhigh = ylow + Math.sin(Math.toRadians(angle));
30: if (yhigh >= 2) hits++;
31: tries++;
32: }
33:
34: /**
35: Gets the number of times the needle hit a line.
36: @return the hit count
37: */
38: public int getHits()
39: {
40: return hits;
41: }
42:

ch06/random2/Needle.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

43: /**
44: Gets the total number of times the needle was dropped.
45: @return the try count
46: */
47: public int getTries()
48: {
49: return tries;
50: }
51:
52: private Random generator;
53: private int hits;
54: private int tries;
55: }

Output:
 Tries = 10000, Tries / Hits = 3.08928
 Tries = 1000000, Tries / Hits = 3.14204

ch06/random2/Needle.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: This program simulates the Buffon needle experiment
03: and prints the resulting approximations of pi.
04: */
05: public class NeedleSimulator
06: {
07: public static void main(String[] args)
08: {
09: Needle n = new Needle();
10: final int TRIES1 = 10000;
11: final int TRIES2 = 1000000;
12:
13: for (int i = 1; i <= TRIES1; i++)
14: n.drop();
15: System.out.printf("Tries = %d, Tries / Hits = %8.5f\n",
16: TRIES1, (double) n.getTries() / n.getHits());
17:
18: for (int i = TRIES1 + 1; i <= TRIES2; i++)
19: n.drop();
20: System.out.printf("Tries = %d, Tries / Hits = %8.5f\n",
21: TRIES2, (double) n.getTries() / n.getHits());
22: }
23: }

ch06/random2/NeedleSimulator.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Output:
 Tries = 10000, Tries / Hits = 3.08928 Tries = 1000000,
 Tries / Hits = 3.14204

ch06/random2/NeedleSimulator.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How do you use a random number generator to simulate the toss
of a coin?

 Answer: int n = generator.nextInt(2); // 0 = heads,
 1 = tails

Self Check 6.9

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why is the NeedleSimulator program not an efficient method for
computing π?

 Answer: The program repeatedly calls Math.toRadians(angle).
 You could simply call Math.toRadians(180) to compute π.

Self Check 6.10

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Debugger = program to run your program and analyze its run-
time behavior

•  A debugger lets you stop and restart your program, see contents
of variables, and step through it

•  The larger your programs, the harder to debug them simply by
inserting print commands

•  Debuggers can be part of your IDE (e.g. Eclipse, BlueJ) or
separate programs (e.g. JSwat)

•  Three key concepts:
•  Breakpoints
•  Single-stepping
•  Inspecting variables

Using a Debugger

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 The Debugger Stopping at a Breakpoint

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Inspecting Variables

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Execution is suspended whenever a breakpoint is reached

•  In a debugger, a program runs at full speed until it reaches a
breakpoint

•  When execution stops you can:
•  Inspect variables
•  Step through the program a line at a time
•  Or, continue running the program at full speed until it reaches the next

breakpoint

•  When program terminates, debugger stops as well

•  Breakpoints stay active until you remove them

•  Two variations of single-step command:
•  Step Over: skips method calls
•  Step Into: steps inside method calls

Debugging

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Current line:
String input = in.next();
Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " +
 syllables);

When you step over method calls, you get to the next line:
String input = in.next();

Word w = new Word(input);
int syllables = w.countSyllables();
System.out.println("Syllables in " + input + ": " +
 syllables);

Single-step Example

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

However, if you step into method calls, you enter the first line of
the countSyllables method
public int countSyllables()
{
 int count = 0;
 int end = text.length() - 1;
 . . .
}

Single-step Example (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

In the debugger, you are reaching a call to System.out.println.
Should you step into the method or step over it?

 Answer: You should step over it because you are not interested
 in debugging the internals of the println method.

Self Check 6.11

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

In the debugger, you are reaching the beginning of a long method
with a couple of loops inside. You want to find out the return value
that is computed at the end of the method. Should you set a
breakpoint, or should you step through the method?

 Answer: You should set a breakpoint. Stepping through loops
 can be tedious.

Self Check 6.12

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Word class counts syllables in a word

•  Each group of adjacent vowels (a, e, i, o, u, y) counts as one
 syllable

•  However, an e at the end of a word doesn't count as a syllable

•  If algorithm gives count of 0, increment to 1

•  Constructor removes non-letters at beginning and end

Sample Debugging Session

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: This class describes words in a document.
03: */
04: public class Word
05: {
06: /**
07: Constructs a word by removing leading and trailing non-
08: letter characters, such as punctuation marks.
09: @param s the input string
10: */
11: public Word(String s)
12: {
13: int i = 0;
14: while (i < s.length() && !Character.isLetter(s.charAt(i)))
15: i++;
16: int j = s.length() - 1;
17: while (j > i && !Character.isLetter(s.charAt(j)))
18: j--;
19: text = s.substring(i, j);
20: }
21:

ch06/debugger/Word.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

22: /**
23: Returns the text of the word, after removal of the
24: leading and trailing non-letter characters.
25: @return the text of the word
26: */
27: public String getText()
28: {
29: return text;
30: }
31:
32: /**
33: Counts the syllables in the word.
34: @return the syllable count
35: */
36: public int countSyllables()
37: {
38: int count = 0;
39: int end = text.length() - 1;
40: if (end < 0) return 0; // The empty string has no syllables
41:

ch06/debugger/Word.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

42: // An e at the end of the word doesn't count as a vowel
43: char ch = Character.toLowerCase(text.charAt(end));
44: if (ch == 'e') end--;
46: boolean insideVowelGroup = false;
47: for (int i = 0; i <= end; i++)
48: {
49: ch = Character.toLowerCase(text.charAt(i));
50: String vowels = "aeiouy";
51: if (vowels.indexOf(ch) >= 0)
52: {
53: // ch is a vowel
54: if (!insideVowelGroup)
55: {
56: // Start of new vowel group
57: count++;
58: insideVowelGroup = true;
59: }
60: }
61: }
62:

ch06/debugger/Word.java (cont.)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

63: // Every word has at least one syllable
64: if (count == 0)
65: count = 1;
66:
67: return count;
68: }
69:
70: private String text;
71: }

ch06/debugger/Word.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.util.Scanner;
02:
03: /**
04: This program counts the syllables of all words in a sentence.
05: */
06: public class SyllableCounter
07: {
08: public static void main(String[] args)
09: {
10: Scanner in = new Scanner(System.in);
11:
12: System.out.println("Enter a sentence ending in a period.");
13:
14: String input;
15: do
16: {
17: input = in.next();
18: Word w = new Word(input);
19: int syllables = w.countSyllables();
20: System.out.println("Syllables in " + input + ": "
21: + syllables);
22: }

ch06/debugger/SyllableCounter.java

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

23: while (!input.endsWith("."));
24: }
25: }

ch06/debugger/SyllableCounter.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Continued

Debug the Program

•  Buggy output (for input "hello yellow peach."):
Syllables in hello: 1
Syllables in yellow: 1

Syllables in peach.: 1

•  Set breakpoint in first line of countSyllables of Word class

•  Start program, supply input. Program stops at breakpoint

•  Method checks if final letter is 'e'

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Check if this works: step to line where check is made and
inspect variable ch

•  Should contain final letter but contains 'l'

Debug the Program (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  end is set to 3, not 4

•  text contains "hell", not "hello"

•  No wonder countSyllables returns 1

More Problems Found

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Culprit is elsewhere

•  Can't go back in time

•  Restart and set breakpoint in Word constructor

More Problems Found (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Supply "hello" input again

•  Break past the end of second loop in constructor

•  Inspect i and j

•  They are 0 and 4 – makes sense since the input consists of
letters

•  Why is text set to "hell"?

•  Off-by-one error: Second parameter of substring is the first
position not to include

 text = substring(i, j);

 should be
 text = substring(i, j + 1);

Debugging the Word Constructor

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Debugging the Word Constructor

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Fix the error

•  Recompile

•  Test again:
 Syllables in hello: 1
 Syllables in yellow: 1
 Syllables in peach.: 1

•  Oh no, it's still not right

•  Start debugger

•  Erase all old breakpoints and set a breakpoint in countSyllables
method

•  Supply input "hello."

Another Error

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Break in the beginning of countSyllables. Then, single-step
through loop
boolean insideVowelGroup = false;
for (int i = 0; i <= end; i++)
{
 ch = Character.toLowerCase(text.charAt(i));
 if ("aeiouy".indexOf(ch) >= 0)
{
 // ch is a vowel
 if (!insideVowelGroup)
 {
 // Start of new vowel group
 count++;
 insideVowelGroup = true;
 }
 }
 }

Debugging countSyllables (again)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  First iteration ('h'): skips test for vowel

•  Second iteration ('e'): passes test, increments count

•  Third iteration ('l'): skips test

•  Fifth iteration ('o'): passes test, but second if is skipped, and
count is not incremented

Debugging countSyllables (again)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  insideVowelGroup was never reset to false

•  Fix
 if ("aeiouy".indexOf(ch) >= 0)
 {
 . . .

 }
 else insideVowelGroup = false;

•  Retest: All test cases pass
Syllables in hello: 2
Syllables in yellow: 2
Syllables in peach.: 1

•  Is the program now bug-free? The debugger can't answer that.

Fixing the Bug

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What caused the first error that was found in this debugging
session?

 Answer: The programmer misunderstood the second parameter
 of the substring method–it is the index of the first character not
 to be included in the substring.

Self Check 6.13

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What caused the second error? How was it detected?

 Answer: The second error was caused by failing to reset
 insideVowelGroup to false at the end of a vowel group. It was
 detected by tracing through the loop and noticing that the loop
 didn't enter the conditional statement that increments the vowel
 count.

Self Check 6.14

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 The First Bug

