
ICOM 4015 Fall 2008 Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ICOM 4015: Advanced
Programming

Lecture 14

Chapter Fourteen: Sorting and Searching

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Chapter Fourteen:
Sorting and Searching

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Chapter Goals

•  To study several sorting and searching algorithms

•  To appreciate that algorithms for the same task can differ widely
in performance

•  To understand the big-Oh notation

•  To learn how to estimate and compare the performance of
algorithms

•  To learn how to measure the running time of a program

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Selection Sort

•  Sorts an array by repeatedly finding the smallest element of
the unsorted tail region and moving it to the front

•  Slow when run on large data sets

•  Example: sorting an array of integers

11 9 17 5 12

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Sorting an Array of Integers

•  Find the smallest and swap it with the first element

•  Find the next smallest. It is already in the correct place

•  Find the next smallest and swap it with first element of unsorted
portion

•  Repeat

•  When the unsorted portion is of length 1, we are done

5 9 17 11 12

5 9 17 11 12

5 9 11 17 12

5 9 11 12 17

5 9 11 12 17

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/SelectionSorter.java

/**
 This class sorts an array, using the selection sort
 algorithm
*/
public class SelectionSorter
{
 /**
 Constructs a selection sorter.
 @param anArray the array to sort
 */
 public SelectionSorter(int[] anArray)
 {
 a = anArray;
 }

 /**
 Sorts the array managed by this selection sorter.
 */
 public void sort()
 {

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/SelectionSorter.java (cont.)

 for (int i = 0; i < a.length - 1; i++)
 {
 int minPos = minimumPosition(i);
 swap(minPos, i);
 }
 }

 /**
 Finds the smallest element in a tail range of the array.
 @param from the first position in a to compare
 @return the position of the smallest element in the
 range a[from] . . . a[a.length - 1]
 */
 private int minimumPosition(int from)
 {
 int minPos = from;
 for (int i = from + 1; i < a.length; i++)
 if (a[i] < a[minPos]) minPos = i;
 return minPos;
 }

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/SelectionSorter.java (cont.)
 /**

 Swaps two entries of the array.

 @param i the first position to swap

 @param j the second position to swap

 */

 private void swap(int i, int j)

 {

 int temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 private int[] a;

}

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/SelectionSortDemo.java

01: import java.util.Arrays;
02:
03: /**
04: This program demonstrates the selection sort algorithm by
05: sorting an array that is filled with random numbers.
06: */
07: public class SelectionSortDemo
08: {
09: public static void main(String[] args)
10: {
11: int[] a = ArrayUtil.randomIntArray(20, 100);
12: System.out.println(Arrays.toString(a));
13:
14: SelectionSorter sorter = new SelectionSorter(a);
15: sorter.sort();
16:
17: System.out.println(Arrays.toString(a));
18: }
19: }
20:
21:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

File ArrayUtil.java

Typical Output:
[65, 46, 14, 52, 38, 2, 96, 39, 14, 33, 13, 4, 24, 99, 89,
77, 73, 87, 36, 81] [2, 4, 13, 14, 14, 24, 33, 36, 38, 39,
46, 52, 65, 73, 77, 81, 87, 89, 96, 99]

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.1

Why do we need the temp variable in the swap method? What
would happen if you simply assigned a[i] to a[j] and a[j] to
a[i]?

 Answer: Dropping the temp variable would not work. Then a[i]
 and a[j] would end up being the same value.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.2

What steps does the selection sort algorithm go through to sort
the sequence 6 5 4 3 2 1?

 Answer:

1 5 4 3 2 6

1 2 3 4 5 6

1 2 3 4 5 6

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Profiling the Selection Sort Algorithm

•  We want to measure the time the algorithm takes to execute
•  Exclude the time the program takes to load
•  Exclude output time

•  Create a StopWatch class to measure execution time of an
algorithm

•  It can start, stop and give elapsed time
•  Use System.currentTimeMillis method

•  Create a StopWatch object
•  Start the stopwatch just before the sort
•  Stop the stopwatch just after the sort
•  Read the elapsed time

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/StopWatch.java
01: /**
02: A stopwatch accumulates time when it is running. You can
03: repeatedly start and stop the stopwatch. You can use a
04: stopwatch to measure the running time of a program.
05: */
06: public class StopWatch
07: {
08: /**
09: Constructs a stopwatch that is in the stopped state
10: and has no time accumulated.
11: */
12: public StopWatch()
13: {
14: reset();
15: }
16:
17: /**
18: Starts the stopwatch. Time starts accumulating now.
19: */
20: public void start()
21: {
22: if (isRunning) return; Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/StopWatch.java (cont.)
23: isRunning = true;
24: startTime = System.currentTimeMillis();
25: }
26:
27: /**
28: Stops the stopwatch. Time stops accumulating and is
29: is added to the elapsed time.
30: */
31: public void stop()
32: {
33: if (!isRunning) return;
34: isRunning = false;
35: long endTime = System.currentTimeMillis();
36: elapsedTime = elapsedTime + endTime - startTime;
37: }
38:
39: /**
40: Returns the total elapsed time.
41: @return the total elapsed time
42: */
43: public long getElapsedTime()
44: {

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/StopWatch.java (cont.)
45: if (isRunning)
46: {
47: long endTime = System.currentTimeMillis();
48: return elapsedTime + endTime - startTime;
49: }
50: else
51: return elapsedTime;
52: }
53:
54: /**
55: Stops the watch and resets the elapsed time to 0.
56: */
57: public void reset()
58: {
59: elapsedTime = 0;
60: isRunning = false;
61: }
62:
63: private long elapsedTime;
64: private long startTime;
65: private boolean isRunning;
66: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/SelectionSortTimer.java
01: import java.util.Scanner;
02:
03: /**
04: This program measures how long it takes to sort an
05: array of a user-specified size with the selection
06: sort algorithm.
07: */
08: public class SelectionSortTimer
09: {
10: public static void main(String[] args)
11: {
12: Scanner in = new Scanner(System.in);
13: System.out.print("Enter array size: ");
14: int n = in.nextInt();
15:
16: // Construct random array
17:
18: int[] a = ArrayUtil.randomIntArray(n, 100);
19: SelectionSorter sorter = new SelectionSorter(a);
20:

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/SelectionSortTimer.java (cont.)
21: // Use stopwatch to time selection sort
22:
23: StopWatch timer = new StopWatch();
24:
25: timer.start();
26: sorter.sort();
27: timer.stop();
28:
29: System.out.println("Elapsed time: "
30: + timer.getElapsedTime() + " milliseconds");
31: }
32: }
33:
34:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/selsort/SelectionSortTimer.java (cont.)

Output:
Enter array size: 100000
Elapsed time: 27880 milliseconds

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Selection Sort on Various Size Arrays*

n Milliseconds
10,000 786
20,000 2,148
30,000 4,796
40,000 9,192
50,000 13,321
60,000 19,299

* Obtained with a Pentium processor, 2 GHz, Java 6, Linux

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Selection Sort on Various Size Arrays

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Selection Sort on Various Size Arrays

•  Doubling the size of the array more than doubles the time
needed to sort it

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.3

Approximately how many seconds would it take to sort a data set
of 80,000 values?

 Answer: Four times as long as 40,000 values, or about 36
 seconds.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.4

Look at the graph in Figure 1. What mathematical shape does it
resemble?

 Answer: A parabola.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Analyzing the Performance of the Selection Sort Algorithm

•  In an array of size n, count how many times an array element is
visited

•  To find the smallest, visit n elements + 2 visits for the swap
•  To find the next smallest, visit (n - 1) elements + 2 visits for the swap
•  The last term is 2 elements visited to find the smallest + 2 visits for the

swap

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Analyzing the Performance of the Selection Sort Algorithm

•  The number of visits:
•  n + 2 + (n - 1) + 2 + (n - 2) + 2 + . . .+ 2 + 2
•  This can be simplified to n2 /2 + 5n/2 - 3
•  5n/2 - 3 is small compared to n2 /2 – so let's ignore it
•  Also ignore the 1/2 – it cancels out when comparing ratios

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Analyzing the Performance of the Selection Sort Algorithm

•  The number of visits is of the order n2

•  Using big-Oh notation: The number of visits is O(n2)

•  Multiplying the number of elements in an array by 2 multiplies
the processing time by 4

•  Big-Oh notation "f(n) = O(g(n))"
expresses that f grows no faster than g

•  To convert to big-Oh notation:
locate fastest-growing term, and ignore constant coefficient

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.5

If you increase the size of a data set tenfold, how much longer
does it take to sort it with the selection sort algorithm?

 Answer: It takes about 100 times longer.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.6

How large does n need to be so that n2/2 is bigger than 5n/2 - 3?

 Answer: If n is 4, then n2/2 is 8 and 5n/2 - 3 is 7.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Insertion Sort

•  Assume initial sequence a[0] . . . a[k] is sorted (k = 0):

11 9 16 5 7

•  Add a[1]; element needs to be inserted before 11

9 11 16 5 7

•  Add a[2]
9 11 16 5 7

•  Add a[3]
5 9 11 16 7

•  Finally, add a[4]
5 9 11 16 7

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/insertionsort/InsertionSorter.java
01: /**
02: This class sorts an array, using the insertion sort
03: algorithm
04: */
05: public class InsertionSorter
06: {
07: /**
08: Constructs an insertion sorter.
09: @param anArray the array to sort
10: */
11: public InsertionSorter(int[] anArray)
12: {
13: a = anArray;
14: }
15:
16: /**
17: Sorts the array managed by this insertion sorter
18: */
19: public void sort()
20: {
21: for (int i = 1; i < a.length; i++)
22: {

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/insertionsort/InsertionSorter.java (cont.)
23: int next = a[i];
24: // Move all larger elements up
25: int j = i;
26: while (j > 0 && a[j - 1] > next)
27: {
28: a[j] = a[j - 1];
29: j--;
30: }
31: // Insert the element
32: a[j] = next;
33: }
34: }
35:
36: private int[] a;
37: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Merge Sort

•  Sorts an array by
•  Cutting the array in half
•  Recursively sorting each half
•  Merging the sorted halves

•  Dramatically faster than the selection sort

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Merge Sort Example

•  Divide an array in half and sort each half

•  Merge the two sorted arrays into a single sorted array

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Merge Sort

public void sort()
{
 if (a.length <= 1) return;
 int [] first = new int[a.length / 2];
 int[] second = new int[a.length - first.length];
 System.arraycopy(a, 0, first, 0, first.length);
 System.arraycopy(a, first.length, second, 0,
 second.length);
 MergeSorter firstSorter = new MergeSorter(first);
 MergeSorter secondSorter = new MergeSorter(second);
 firstSorter.sort();
 secondSorter.sort();
 merge(first, second);
}

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/mergesort/MergeSorter.java

01: /**
02: This class sorts an array, using the merge sort algorithm.
03: */
04: public class MergeSorter
05: {
06: /**
07: Constructs a merge sorter.
08: @param anArray the array to sort
09: */
10: public MergeSorter(int[] anArray)
11: {
12: a = anArray;
13: }
14:
15: /**
16: Sorts the array managed by this merge sorter.
17: */
18: public void sort()
19: {
20: if (a.length <= 1) return;
21: int[] first = new int[a.length / 2];
22: int[] second = new int[a.length - first.length];

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/mergesort/MergeSorter.java (cont.)
23: System.arraycopy(a, 0, first, 0, first.length);
24: System.arraycopy(a, first.length, second, 0, second.length);
25: MergeSorter firstSorter = new MergeSorter(first);
26: MergeSorter secondSorter = new MergeSorter(second);
27: firstSorter.sort();
28: secondSorter.sort();
29: merge(first, second);
30: }
31:
32: /**
33: Merges two sorted arrays into the array managed by this
34: merge sorter.
35: @param first the first sorted array
36: @param second the second sorted array
37: */
38: private void merge(int[] first, int[] second)
39: {
40: // Merge both halves into the temporary array
41:
42: int iFirst = 0;
43: // Next element to consider in the first array
44: int iSecond = 0;

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/mergesort/MergeSorter.java (cont.)
45: // Next element to consider in the second array
46: int j = 0;
47: // Next open position in a
48:
49: // As long as neither iFirst nor iSecond past the end, move
50: // the smaller element into a
51: while (iFirst < first.length && iSecond < second.length)
52: {
53: if (first[iFirst] < second[iSecond])
54: {
55: a[j] = first[iFirst];
56: iFirst++;
57: }
58: else
59: {
60: a[j] = second[iSecond];
61: iSecond++;
62: }
63: j++;
64: }
65: Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/mergesort/MergeSorter.java (cont.)
66: // Note that only one of the two calls to arraycopy below
67: // copies entries
68:
69: // Copy any remaining entries of the first array
70: System.arraycopy(first, iFirst, a, j, first.length - iFirst);
71:
72: // Copy any remaining entries of the second half
73: System.arraycopy(second, iSecond, a, j, second.length -
iSecond);
74: }
75:
76: private int[] a;
77: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/mergesort/MergeSortDemo.java
01: import java.util.Arrays;
02:
03: /**
04: This program demonstrates the merge sort algorithm by
05: sorting an array that is filled with random numbers.
06: */
07: public class MergeSortDemo
08: {
09: public static void main(String[] args)
10: {
11: int[] a = ArrayUtil.randomIntArray(20, 100);
12: System.out.println(Arrays.toString(a));
13:
14: MergeSorter sorter = new MergeSorter(a);
15: sorter.sort();
16: System.out.println(Arrays.toString(a));
17: }
18: }
19:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/mergesort/MergeSortDemo.java (cont.)

Typical Output:
[8, 81, 48, 53, 46, 70, 98, 42, 27, 76, 33, 24, 2, 76, 62,
89, 90, 5, 13, 21] [2, 5, 8, 13, 21, 24, 27, 33, 42, 46,
48, 53, 62, 70, 76, 76, 81, 89, 90, 98]

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.7

Why does only one of the two arraycopy calls at the end of the
merge method do any work?

 Answer: When the preceding while loop ends, the loop
 condition must be false, that is,
 iFirst >= first.length or iSecond >= second.length
 (De Morgan's Law).
 Then first.length - iFirst <= 0 or iSecond.length –
 iSecond <= 0.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.8

Manually run the merge sort algorithm on the array 8 7 6 5 4 3 2 1.

 Answer:
 First sort 8 7 6 5.
 Recursively, first sort 8 7.
 Recursively, first sort 8. It's sorted.
 Sort 7. It's sorted.
 Merge them: 7 8.
 Do the same with 6 5 to get 5 6.
 Merge them to 5 6 7 8.
 Do the same with 4 3 2 1: Sort 4 3 by sorting 4 and 3 and
 merging them to 3 4.
 Sort 2 1 by sorting 2 and 1 and merging them to 1 2.
 Merge 3 4 and 1 2 to 1 2 3 4.
 Finally, merge 5 6 7 8 and 1 2 3 4 to 1 2 3 4 5 6 7 8.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Analyzing the Merge Sort Algorithm

n Merge Sort (milliseconds) Selection Sort (milliseconds)
10,000 40 786
20,000 73 2,148
30,000 134 4,796
40,000 170 9,192
50,000 192 13,321
60,000 205 19,299

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Merge Sort Timing vs. Selection Sort

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Analyzing the Merge Sort Algorithm

•  In an array of size n, count how many times an array element is
visited

•  Assume n is a power of 2: n = 2m

•  Calculate the number of visits to create the two sub-arrays and
then merge the two sorted arrays

•  3 visits to merge each element or 3n visits
•  2n visits to create the two sub-arrays
•  total of 5n visits

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Analyzing the Merge Sort Algorithm

•  Let T(n) denote the number of visits to sort an array of n
elements then

•  T(n) = T(n/2) + T(n/2) + 5n or
•  T(n) = 2T(n/2) + 5n

•  The visits for an array of size n/2 is:
•  T(n/2) = 2T(n/4) + 5n/2
•  So T(n) = 2 × 2T(n/4) +5n + 5n

•  The visits for an array of size n/4 is:
•  T(n/4) = 2T(n/8) + 5n/4
•  So T(n) = 2 × 2 × 2T(n/8) + 5n + 5n + 5n

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Analyzing Merge Sort Algorithm

•  Repeating the process k times:
•  T(n) = 2 kT(n/2k) +5nk
•  since n = 2m, when k=m: T(n) = 2mT(n/2m) +5nm
•  T(n) = nT(1) +5nm
•  T(n) = n + 5nlog2(n)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Analyzing Merge Sort Algorithm

•  To establish growth order
•  Drop the lower-order term n
•  Drop the constant factor 5
•  Drop the base of the logarithm since

all logarithms are related by a constant factor
•  We are left with n log(n)

•  Using big-Oh notation: number of visits is O(nlog(n))

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Merge Sort Vs Selection Sort

•  Selection sort is an O(n2) algorithm

•  Merge sort is an O(nlog(n)) algorithm

•  The nlog(n) function grows much more slowly than n2

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Sorting in a Java Program

•  The Arrays class implements a sorting method

•  To sort an array of integers
int[] a = . . . ;
Arrays.sort(a);

•  That sort method uses the Quicksort algorithm (see Advanced
Topic 14.3)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.9

Given the timing data for the merge sort algorithm in the table at
the beginning of this section, how long would it take to sort an
array of 100,000 values?

 Answer: Approximately 100,000 × log(100,000) / 50,000 ×
 log(50,000) = 2 × 5 / 4.7 = 2.13 times the time required for
 50,000 values. That's 2.13 × 192 milliseconds or approximately
 408 milliseconds.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.10

Suppose you have an array double[] values in a Java program.
How would you sort it?

 Answer: By calling Arrays.sort(values).

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The Quicksort Algorithm

•  Divide and conquer
1. Partition the range
3. Sort each partition

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The Quicksort Algorithm

public void sort(int from, int to)
{
 if (from >= to)
 return; int p =
 partition(from, to);
 sort(from, p);
 sort(p + 1, to);
}

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The Quicksort Algorithm

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The Quicksort Algorithm

private int partition(int from, int to)
{
 int pivot = a[from];
 int i = from - 1;
 int j = to + 1;
 while (i < j)
 {
 i++;
 while (a[i] < pivot) i++;
 j--;
 while (a[j] > pivot) j--;
 if (i < j) swap(i, j);
 }
 return j;
}

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The First Programmer

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Searching

•  Linear search: also called sequential search

•  Examines all values in an array until it finds a match or reaches
the end

•  Number of visits for a linear search of an array of n elements:
•  The average search visits n/2 elements
•  The maximum visits is n

•  A linear search locates a value in an array in O(n) steps

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/linsearch/LinearSearcher.java
01: /**
02: A class for executing linear searches through an array.
03: */
04: public class LinearSearcher
05: {
06: /**
07: Constructs the LinearSearcher.
08: @param anArray an array of integers
09: */
10: public LinearSearcher(int[] anArray)
11: {
12: a = anArray;
13: }
14:
15: /**
16: Finds a value in an array, using the linear search
17: algorithm.
18: @param v the value to search
19: @return the index at which the value occurs, or -1
20: if it does not occur in the array
21: */ Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/linsearch/LinearSearcher.java (cont.)

22: public int search(int v)
23: {
24: for (int i = 0; i < a.length; i++)
25: {
26: if (a[i] == v)
27: return i;
28: }
29: return -1;
30: }
31:
32: private int[] a;
33: }

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/linsearch/LinearSearchDemo.java

Typical Output:
[46, 99, 45, 57, 64, 95, 81, 69, 11, 97, 6, 85, 61, 88,
29, 65, 83, 88, 45, 88]
Enter number to search for, -1 to quit: 11
Found in position 8

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.11

Suppose you need to look through 1,000,000 records to find a
telephone number. How many records do you expect to search
before finding the number?

 Answer: On average, you'd make 500,000 comparisons.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.12

Why can't you use a "for each" loop for (int element : a) in the
search method?

 Answer: The search method returns the index at which the
 match occurs, not the data stored at that location.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Binary Search

•  Locates a value in a sorted array by
•  Determining whether the value occurs in the first or second half
•  Then repeating the search in one of the halves

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Binary Search

•  To search 15:

•  15 ≠ 17: we don't have a match

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/binsearch/BinarySearcher.java

01: /**
02: A class for executing binary searches through an array.
03: */
04: public class BinarySearcher
05: {
06: /**
07: Constructs a BinarySearcher.
08: @param anArray a sorted array of integers
09: */
10: public BinarySearcher(int[] anArray)
11: {
12: a = anArray;
13: }
14:
15: /**
16: Finds a value in a sorted array, using the binary
17: search algorithm.
18: @param v the value to search
19: @return the index at which the value occurs, or -1
20: if it does not occur in the array
21: */
22: public int search(int v)

Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

ch14/binsearch/BinarySearcher.java (cont.)

23: {
24: int low = 0;
25: int high = a.length - 1;
26: while (low <= high)
27: {
28: int mid = (low + high) / 2;
29: int diff = a[mid] - v;
30:
31: if (diff == 0) // a[mid] == v
32: return mid;
33: else if (diff < 0) // a[mid] < v
34: low = mid + 1;
35: else
36: high = mid - 1;
37: }
38: return -1;
39: }
40:
41: private int[] a;
42: }
43:

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Binary Search

•  Count the number of visits to search an sorted array of size n
•  We visit one element (the middle element) then search either the left or

right subarray
•  Thus: T(n) = T(n/2) + 1

•  If n is n/2, then T(n/2) = T(n/4) + 1

•  Substituting into the original equation: T(n) = T(n/4) + 2

•  This generalizes to: T(n) = T(n/2k) + k

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Binary Search

•  Assume n is a power of 2, n = 2m
where m = log2(n)

•  Then: T(n) = 1 + log2(n)

•  Binary search is an O(log(n)) algorithm

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Searching a Sorted Array in a Program

•  The Arrays class contains a static binarySearch method

•  The method returns either
•  The index of the element, if element is found
•  Or -k - 1 wherek is the position before which the element should be

inserted

int[] a = { 1, 4, 9 };
int v = 7;
int pos = Arrays.binarySearch(a, v);
 // Returns -3; v should be inserted before
 position 2

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.13

Suppose you need to look through a sorted array with 1,000,000
elements to find a value. Using the binary search algorithm, how
many records do you expect to search before finding the value?

 Answer: You would search about 20. (The binary log of 1,024 is
 10.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.14

Why is it useful that the Arrays.binarySearch method indicates
the position where a missing element should be inserted?

 Answer: Then you know where to insert it so that the array
 stays sorted, and you can keep using binary search.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.15

Why does Arrays.binarySearch return -k - 1 and not -k to indicate
that a value is not present and should be inserted before position
k?

 Answer: Otherwise, you would not know whether a value is
 present when the method returns 0.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Sorting Real Data

•  Arrays.sort sorts objects of classes that implement Comparable
interface

public interface Comparable
{
 int compareTo(Object otherObject);
}

•  The call a.compareTo(b) returns
•  A negative number is a should come before b
•  0 if a and b are the same
•  A positive number otherwise

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Sorting Real Data

•  Several classes in Java (e.g. String and Date) implement
Comparable

•  You can implement Comparable interface for your own classes

public class Coin implements Comparable
{
 . . .
 public int compareTo(Object otherObject)
 {
 Coin other = (Coin)otherObject;
 if (value < other.value) return -1;
 if (value == other.value) return 0;
 return 1;
 }
 . . .
}

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

compareTo Method

•  The implementation must define a total ordering relationship
•  Antisymmetric

If a.compareTo(b) = 0, then b.compareTo(a) = 0
•  Reflexive
a.compareTo(a) = 0

•  Transitive
If a.compareTo(b) = 0 and b.compareTo(c) = 0, then
a.compareTo(c) = 0

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Sorting Real Data

•  Once your class implements Comparable, simply use the
Arrays.sort method:
Coin[] coins = new Coin[n];
// Add coins
. . .

Arrays.sort(coins);

•  If the objects are stored in an ArrayList, use
Collections.sort:
ArrayList<Coin> coins = new ArrayList<Coin>();
// Add coins
. . .

Collections.sort(coins);

•  Collections.sort uses the merge sort algorithm

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.16

Why can't the Arrays.sort method sort an array of Rectangle
objects?

 Answer: The Rectangle class does not implement the
 Comparable interface.

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Self Check 14.17

What steps would you need to take to sort an array of
BankAccount objects by increasing balance?

 Answer: The BankAccount class needs to implement the
 Comparable interface. Its compareTo method must compare
 the bank balances.

