
Imperative Programming 
The Case of FORTRAN 

ICOM 4036 
Lecture 5 

READINGS: PLP Chapters 6 and 8 



The Imperative Paradigm 

•  Computer Model consists of bunch of 
variables 

•  A program is a sequence of state 
modifications or assignment statements 
that converge to an answer 

•  PL provides multiple tools for structuring 
and organizing these steps 
– E.g. Loops, procedures 

This is what you have been doing since INGE 3016! 



A Generic Imperative Program 

START 

Initialize 
Variables 

Modify 
Variables 

Converged? 

END 

yes 

no 



Imperative Fibonacci Numbers (C) 

int fibonacci(int f0, int f1, int n) { 
    // Returns the nth element of the Fibonacci sequence 
    int fn = f0; 
    for (int i=0; i<n; i++) { 
        fn = f0 + f1; 
        f0 = f1; 
        f1 = fn; 
    } 
    return fn; 
} 



Examples of (Important)  
Imperative Languages 

•  FORTRAN (J. Backus IBM late 50’s) 
•  Pascal (N. Wirth 70’s) 
•  C (Kernigham & Ritchie AT&T  late 70’s) 
•  C++ (Stroustrup AT&T 80’s) 
•  Java (Sun Microsystems late 90’s) 
•  C# (Microsoft 00’s) 



FORTRAN Highlights 

•  For High Level Programming Language 
ever implemented 

•  First compiler developed by IBM for the 
IBM 704 computer 

•  Project Leader: John Backus 
•  Technology-driven design 

– Batch processing, punched cards, small 
memory, simple I/O, GUI’s not invented yet 



Some Online References 

•  Professional Programmer’s Guide to 
FORTRAN 

•  Getting Started with G77 

Links available on course web site 



Structure of a FORTRAN program 
PROGRAM <name> 

    <program_body> 

END 

SUBROUTINE <name> (args) 

    <subroutine_body> 

END 

FUNCTION <name> (args) 

    <function_body> 

END 
… 



Lexical/Syntactic Structure 

•  One statement per line 
•  First 6 columns reserved 
•  Identifiers no longer than 6 symbols 
•  Flow control uses numeric labels 
•  Unstructured programs possible 



Hello World in Fortran 
      PROGRAM TINY  
          WRITE(UNIT=*, FMT=*) 'Hello, world'  
      END  

First 6 columns 
Reserved 

One 
Statement 
Per line 

Designed with the Punched Card in Mind 



FORTRAN By Example 2 
      PROGRAM LOAN 
        WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'  
        READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS  
        RATE = PCRATE / 100.0  
        REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))  
        WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY  
      END 

Implicitly Defined Variables 
Type determined by initial letter 

I-M ~ INTEGER 
A-H, O-Z FLOAT 



FORTRAN By Example 2 
      PROGRAM LOAN 
        WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'  
        READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS  
        RATE = PCRATE / 100.0  
        REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))  
        WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY  
      END 

FORTRAN’s Version 
of 

Standard Output Device 



FORTRAN By Example 2 
      PROGRAM LOAN 
        WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'  
        READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS  
        RATE = PCRATE / 100.0  
        REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))  
        WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY  
      END 

FORTRAN’s Version 
of 

Default Format 



FORTRAN By Example 3 
      PROGRAM REDUCE  
      WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'  
      READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS  
      RATE = PCRATE / 100.0 
      REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS)) 
      WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY 
      WRITE(UNIT=*, FMT=*)'End of Year Balance' 
      DO 15,IYEAR = 1,NYEARS,1 
          AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY 
          WRITE(UNIT=*, FMT=*)IYEAR, AMOUNT 
   15 CONTINUE 
      END  

A loop consists of two  
separate statements 

 -> Easy to construct 
               unstructured programs 



FORTRAN Do Loops 
      PROGRAM REDUCE  
      WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'  
      READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS  
      RATE = PCRATE / 100.0 
      REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS)) 
      WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY 
      WRITE(UNIT=*, FMT=*)'End of Year Balance' 
      DO 15,IYEAR = 1,NYEARS,1 
          AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY 
          WRITE(UNIT=*, FMT=*)IYEAR, AMOUNT 
   15 CONTINUE 
      END  

A loop consists of two  
separate statements 

 -> Easy to construct 
               unstructured  
  programs 

Enter amount, % rate, years  
2000, 9.5, 5  
Annual repayments are 520.8728  
End of Year Balance  
       1 1669.127  
       2 1306.822  
       3 910.0968  
       4 475.6832  
       5 2.9800416E-04  



FORTRAN Do Loops 
      PROGRAM REDUCE  
      WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'  
      READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS  
      RATE = PCRATE / 100.0 
      REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS)) 
      WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY 
      WRITE(UNIT=*, FMT=*)'End of Year Balance' 
      DO 15,IYEAR = 1,NYEARS,1 
          AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY 
          WRITE(UNIT=*, FMT=*)IYEAR, AMOUNT 
   15 CONTINUE 
      END  

Enter amount, % rate, years  
2000, 9.5, 5  
Annual repayments are 520.8728  
End of Year Balance  
       1 1669.127  
       2 1306.822  
       3 910.0968  
       4 475.6832  
       5 2.9800416E-04  

•  optional increment (can be negative) 
•  final value of index variable 
•  index variable and initial value 
•  end label 



FORTRAN Functions 
      PROGRAM TRIANG  
        WRITE(UNIT=*,FMT=*)'Enter lengths of three sides:'         
        READ(UNIT=*,FMT=*) SIDEA, SIDEB, SIDEC  
        WRITE(UNIT=*,FMT=*)'Area is ', AREA3(SIDEA,SIDEB,SIDEC)  
      END 

      FUNCTION AREA3(A, B, C)  
*     Computes the area of a triangle from lengths of sides  
        S = (A + B + C)/2.0  
        AREA3 = SQRT(S * (S-A) * (S-B) * (S-C))  
      END  

•  No recursion 
•  Parameters passed by reference only 
•  Arrays allowed as parameters 
•  No nested procedure definitions – Only two scopes 
•  Procedural arguments allowed 
•  No procedural return values 

Think: why do you think FORTRAN designers made each of these choices? 



FORTRAN IF-THEN-ELSE 
      REAL FUNCTION AREA3(A, B, C) 
*       Computes the area of a triangle from lengths of its sides.  
*       If arguments are invalid issues error message and returns 
*       zero.          
        REAL A, B, C  
        S = (A + B + C)/2.0  
        FACTOR = S * (S-A) * (S-B) * (S-C)  
        IF(FACTOR .LE. 0.0) THEN  
          STOP 'Impossible triangle'  
        ELSE  
          AREA3 = SQRT(FACTOR)  
        END IF  
      END  

NO RECURSION ALLOWED IN FORTRAN77 !!! 



FORTRAN ARRAYS 
      SUBROUTINE MEANSD(X, NPTS, AVG, SD) 
        INTEGER NPTS 
        REAL X(NPTS), AVG, SD 
        SUM = 0.0 
        SUMSQ = 0.0 
        DO 15, I = 1,NPTS  
          SUM = SUM + X(I) 
          SUMSQ = SUMSQ + X(I)**2 
   15   CONTINUE 
        AVG = SUM / NPTS 
        SD = SQRT(SUMSQ - NPTS * AVG)/(NPTS-1) 
      END 

Subroutines are analogous 
 to void functions in C Parameters are passed by reference 



 subroutine checksum(buffer,length,sum32) 

C       Calculate a 32-bit 1's complement checksum of the input buffer, adding 
C       it to the value of sum32.  This algorithm assumes that the buffer 
C       length is a multiple of 4 bytes. 

C       a double precision value (which has at least 48 bits of precision) 
C       is used to accumulate the checksum because standard Fortran does not  
C       support an unsigned integer datatype. 

C       buffer  - integer buffer to be summed 
C       length  - number of bytes in the buffer (must be multiple of 4) 
C       sum32   - double precision checksum value (The calculated checksum 
C                 is added to the input value of sum32 to produce the  
C                 output value of sum32) 

        integer buffer(*),length,i,hibits  
        double precision sum32,word32 
        parameter (word32=4.294967296D+09) 
C                 (word32 is equal to 2**32) 

C       LENGTH must be less than 2**15, otherwise precision may be lost 
C       in the sum 
        if (length .gt. 32768)then 
            print *, 'Error: size of block to sum is too large' 
            return 
        end if 

        do i=1,length/4 
            if (buffer(i) .ge. 0)then 
                sum32=sum32+buffer(i) 
            else 
C               sign bit is set, so add the equivalent unsigned value 
                sum32=sum32+(word32+buffer(i)) 
            end if 
        end do 

C       fold any overflow bits beyond 32 back into the word 
10      hibits=sum32/word32 
        if (hibits .gt. 0)then 
            sum32=sum32-(hibits*word32)+hibits 
            go to 10 
        end if 

        end 



Appendix B 
From 

Original 
Fortan I 
Manual 
(IBM) 



WhiteBoard Exercises 

•  Computing machine precision 
•  Computing the integral of a function 
•  Solving a linear system of equations 

FORTRAN Heavily used in scientific computing applications 



Chapter 6:: Control Flow 

Programming Language Pragmatics 
Michael L. Scott 



Control Flow 

•  Basic paradigms for control flow: 
– Sequencing (e.g. Begin … End) 
– Selection 
–  Iteration 
– Subroutines, recursion (and related control 

abstractions, e.g. iterators) 
– Nondeterminacy 
– Concurrency 



Expression Evaluation  

•  Infix, prefix operators 
•  Precedence, associativity (see Figure 6.1) 

– C has 15 levels - too many to remember 
– Pascal has 3 levels - too few for good 

semantics 
– Fortran has 8 
– Ada has 6 

•  Ada puts and & or at same level 

– Lesson: when unsure, use parentheses! 



Expression Evaluation  



Expression Evaluation  

•  Ordering of operand evaluation (generally 
none) 

•  Application of arithmetic identities 
– distinguish between commutativity, and 

(assumed to be safe) 
– associativity (known to be dangerous) 
(a + b) + c works if a~=maxint and b~=minint and c<0 
a + (b + c) does not 

–  inviolability of parentheses 



Expression Evaluation  

•   Short-circuiting 
– Consider (a < b) && (b < c): 

•  If a >= b there is no point evaluating whether b < 
c because (a < b) && (b < c) is 
automatically false 

– Other similar situations 
  if (b != 0 && a/b == c) ... 

  if (*p && p->foo) ... 

  if (f || messy()) ... 



Expression Evaluation  
•  Variables as values vs. variables as 

references 
– value-oriented languages 

•  C, Pascal, Ada 

–  reference-oriented languages 
•  most functional languages (Lisp, Scheme, ML) 
•  Clu, Smalltalk 

– Algol-68 kinda halfway in-between 
– Java deliberately in-between 

•  built-in types are values 
•  user-defined types are objects - references 



Expression Evaluation  
•  Expression-oriented vs. statement-

oriented languages 
– expression-oriented: 

•  functional languages (Lisp, Scheme, ML) 
•  Algol-68 

– statement-oriented: 
•  most imperative languages 

– C kinda halfway in-between (distinguishes) 
•  allows expression to appear instead of statement 



Expression Evaluation  
•  Orthogonality 

– Features that can be used in any 
combination 
• Meaning is consistent 

if (if b != 0 then a/b == c else false) 

then ... 

if (if f then true else messy()) then ... 

•  Initialization 
– Pascal has no initialization facility 

(assign) 

•  Aggregates 
– Compile-time constant values of user-



Expression Evaluation  

•  Assignment 
– statement (or expression) executed for its side 

effect 
– assignment operators (+=, -=, etc) 

•  handy 
•  avoid redundant work (or need for optimization) 
•  perform side effects exactly once 

– C --, ++ 
•  postfix form  



Expression Evaluation  

•  Side Effects 
– often discussed in the context of functions 
– a side effect is some permanent state change 

caused by execution of function 
•  some noticeable effect of call other than return 

value 
•  in a more general sense, assignment statements 

provide the ultimate example of side effects 
–  they change the value of a variable 



Expression Evaluation  

•  SIDE EFFECTS ARE FUNDAMENTAL 
TO THE WHOLE VON NEUMANN 
MODEL OF COMPUTING 

•  In (pure) functional, logic, and dataflow 
languages, there are no such changes 
– These languages are called SINGLE-

ASSIGNMENT languages 



Expression Evaluation  

•  Several languages outlaw side effects for 
functions 
– easier to prove things about programs 
– closer to Mathematical intuition 
– easier to optimize 
–  (often) easier to understand 

•  But side effects can be nice 
– consider rand() 



Expression Evaluation  
•  Side effects are a particular problem if they 

affect state used in other parts of the expression 
in which a function call appears  
–  It's nice not to specify an order, because it makes it 

easier to optimize 
–  Fortran says it's OK to have side effects 

•  they aren't allowed to change other parts of the expression 
containing the function call 

•  Unfortunately, compilers can't check this completely, and 
most don't at all 



•  Sequencing 
– specifies a linear ordering on 

statements 
• one statement follows another 

– very imperative, Von-Neuman 

Sequencing  



•  Selection 
– sequential if statements 
  if ... then ... else 

  if ... then ... elsif ... else 

  (cond 

   (C1) (E1) 

   (C2) (E2) 

   ... 

   (Cn) (En) 
   (T)  (Et)   

  ) 

Selection  



•  Selection 
– Fortran computed gotos 
–  jump code 

•  for selection and logically-controlled loops 
•  no point in computing a Boolean value into a register, 

then testing it 
•  instead of passing register containing Boolean out of 

expression as a synthesized attribute, pass inherited 
attributes INTO expression indicating where to jump 
to if true, and where to jump to if false 

Selection  



•  Jump is especially useful in the presence 
of short-circuiting 

•  Example (section 6.4.1 of book): 

if ((A > B) and (C > D)) or (E <> F) then 

  then_clause 

 else 

  else_clause 

Selection  



•  Code generated w/o short-circuiting 
(Pascal) 

    r1 := A   -- load 

   r2 := B 

   r1 := r1 > r2 

   r2 := C 
  r3 := D 
  r2 := r2 > r3 

   r1 := r1 & r2 
   r2 := E 
   r3 := F 

   r2 := r2 $<>$ r3 

   r1 := r1 $|$ r2 
   if r1 = 0 goto L2 

  L1:  then_clause  -- label not actually used 

   goto L3 

  L2:  else_clause 

   L3: 

Selection  



•  Code generated w/ short-circuiting (C) 

    r1 := A 
   r2 := B 

   if r1 <= r2 goto L4 

   r1 := C 

  r2 := D 
  if r1 > r2 goto L1 

  L4:  r1 := E 

   r2 := F 
     if r1 = r2 goto L2 

 L1:  then_clause 

    goto L3 

   L2:  else_clause 
 L3: 

Selection  



•  Enumeration-controlled 
– Pascal or Fortran-style for loops 

•  scope of control variable 
•  changes to bounds within loop 
•  changes to loop variable within loop 
•  value after the loop 

Iteration  



Iteration  
•  The goto controversy 

– assertion: gotos are needed almost 
exclusively to cope with lack of one-and-a-
half loops 

– early return from procedure 
– exceptions 
–  in many years of programming, I can't 

remember using one for any other purpose 
•  except maybe complicated conditions that can 

be separated into a single if-then-else because 
of the need for short-circuiting 



Recursion  

•  Recursion 
– equally powerful to iteration 
– mechanical transformations back and forth 
– often more intuitive (sometimes less) 
– naïve implementation less efficient 

•  no special syntax required 
•  fundamental to functional languages like Scheme 



Recursion  

•  Tail recursion 
– No computation follows recursive call  
   /* assume a, b > 0 */ 

int gcd (int a, int b) { 

  if (a == b) return a; 

  else if (a > b) return gcd (a - b, b); 

  else return gcd (a, b – a); 

} 



Chapter 8 :: Subroutines 
and Control Abstraction 

Programming Language Pragmatics 
Michael L. Scott 
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The MIPS Architecture 
ISA at a Glance 

•  Reduced Instruction Set Computer 
(RISC) 

•  32 general purpose 32-bit registers  
•  Load-store architecture: Operands in 

registers 
•  Byte Addressable 
•  32-bit address space 
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The MIPS Architecture 
32 Register Set (32-bit registers) 
Register # Reg Name Function 

r0 r0 Zero constant 

r4-r7 a0-a3 Function arguments 

r1 at Reserved for Operating Systems 

r30 fp Frame pointer 

r28 gp Global memory pointer 

r26-r27 k0-k1 Reserved for OS Kernel 

r31 ra Function return address 

r16-r23 s0-s7 Callee saved registers 

r29 sp Stack pointer 

r8-r15 t0-t7 Temporary variables 

r24-r25 t8-t9 Temporary variables 

r2-r3 v0-v1 Function return values 
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Simple and uniform 32-bit 3-operand instruction formats 

– R Format: Arithmetic/Logic operations on registers 

– I Format: Branches, loads and stores 

– J Format: Jump Instruction 

The MIPS Architecture 
Main Instruction Formats 

opcode 
6 bits 

rs 
5 bits 

rt 
5 bits 

rd 
5 bits 

shamt 
5 bits 

funct 
6 bits 

opcode 
6 bits 

rs 
5 bits 

rt 
5 bits 

Address/Immediate 
16 bits 

opcode 
6 bits 

rs 
5 bits 

rt 
5 bits 

Address/Immediate 
16 bits 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MIPS Data Paths 
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Mips Packaging 
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The MIPS Architecture 
 Examples of Native Instruction Set 

Instruction 
Group 

Instruction Function 

Arithmetic/ 

Logic 

add $s1,$s2,$s3 $s1 = $s2 + $s3 

addi $s1,$s2,K $s1 = $s2 + K 

Load/Store lw $s1,K($s2) $s1 = MEM[$s2+K] 

sw $s1,K($s2) MEM[$s2+K] = $s1 

Jumps and 

Conditional 
Branches 

beq $s1,$s2,K if ($s1=$s2) goto PC + 4 + K 

slt $s1,$s2,$s3 if ($s2<$s3) $s1=1 else $s1=0 

j K goto K 

Procedures jal K $ra = PC + 4; goto K 

jr $ra goto $ra 
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The SPIM Assembler 
 Examples of Pseudo-Instruction Set 

Instruction Group Syntax Translates to: 
Arithmetic/ 

Logic 

neg $s1, $s2 sub $s1, $r0, $s2 

not $s1, $s2 nor $17, $18, $0 

Load/Store li $s1, K ori $s1, $0, K 

la $s1, K lui $at, 152 

ori $s1, $at, -27008 

move $s1, $s2 

Jumps and 

Conditional 
Branches 

bgt $s1, $s2, K slt $at, $s1, $s2 

bne $at, $0, K 

sge $s1, $s2, $s3       bne $s3, $s2, foo 

      ori $s1, $0, 1 

      beq $0, $0, bar 

foo:  slt $s1, $s3, $s2 

bar: 

Pseudo Instructions: translated to native instructions by Assembler 
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The SPIM Assembler 
 Examples of Assembler Directives 

Group Directive Function 

Memory 
Segmentation 

.data <addr> Data Segment starting at  

.text <addr> Text (program) Segment 

.stack <addr> Stack Segment 

.ktext <addr> Kernel Text Segment 

.kdata <addr> Kernel Data Segment 

Data Allocation x:  .word  <value> Allocates 32-bit variable 

x:  .byte  <value> Allocates 8-bit variable 

x:  .ascii “hello” Allocates 8-bit cell array 

Other     .globl x x is external symbol 

Assembler Directives: Provide assembler additional info to generate machine code 
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Handy MIPS ISA References 

•  Appendix A: Patterson & Hennessy 

•  SPIM ISA Summary on class website 

•  Patterson & Hennessy Back Cover 
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Computing Integer Division 
Iterative C++ Version 

int a = 12; 
int b = 4; 
int result = 0; 
main () { 
    while (a >= b) { 
      a = a - b; 
      result ++;       
    } 
  } 
} 

MIPS/SPIM Version 

MIPS  
Assembly Language 

C++ 

 .data    # Use HLL program as a comment 

x:  .word  12   # int x = 12;  

y:  .word  4   # int y = 4;  

res:  .word  0   # int res = 0;  

 .globl  main 

 .text 

main:  la  $s0, x   # Allocate registers for globals 

 lw  $s1, 0($s0)   #   x in $s1 

 lw  $s2, 4($s0)   #   y in $s2 

 lw  $s3, 8($s0)   #   res in $s3 

while:  bgt  $s2, $s1, endwhile  # while (x >= y) { 

 sub  $s1, $s1, $s2   #   x = x - y;  

 addi  $s3, $s3, 1   #   res ++;  

 j  while   # } 

endwhile: 

 la  $s0, x   # Update variables in memory 

 sw  $s1, 0($s0)    

 sw  $s2, 4($s0)    

 sw  $s3, 8($s0) 
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Computing Integer Division 
Iterative C++ Version 

int a = 12; 
int b = 4; 
int result = 0; 
main () { 
    while (a >= b) { 
      a = a - b; 
      result ++;       
    } 
  } 
  printf("Result = %d \n"); 
} 

MIPS/SPIM Version 
Input/Output in SPIM 

MIPS  
Assembly Language 

C++ 

 .data    # Use HLL program as a comment 

x:  .word  12   # int x = 12;  

y:  .word  4   # int y = 4;  

res:  .word  0   # int res = 0;  
pf1:  .asciiz  "Result = " 

 .globl  main 

 .text 

main:  la  $s0, x   # Allocate registers for globals 

 lw  $s1, 0($s0)   #   x in $s1 

 lw  $s2, 4($s0)   #   y in $s2 

 lw  $s3, 8($s0)   #   res in $s3 

while:  bgt  $s2, $s1, endwhile  # while (x >= y) { 

 sub  $s1, $s1, $s2  #   x = x - y;  

 addi  $s3, $s3, 1   #   res ++;  

 j  while   # } 

endwhile: 
 la  $a0, pf1   # printf("Result = %d \n"); 
 li  $v0, 4   # //system call to print_str 
 syscall 
 move  $a0, $s3    
 li  $v0, 1   # //system call to print_int 
 syscall 

 la  $s0, x   # Update variables in memory 

 sw  $s1, 0($s0)    

 sw  $s2, 4($s0)    

 sw  $s3, 8($s0) 
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SPIM Assembler Abstractions 

•  Symbolic Labels 
–  Instruction addresses and memory 

locations 
•  Assembler Directives 

–  Memory allocation 
–  Memory segments 

•  Pseudo-Instructions 
–  Extend native instruction set without 

complicating arquitecture 
•  Macros 



Implementing Procedures 

•  Why procedures? 
–  Abstraction 
–  Modularity 
–  Code re-use 

•  Initial Goal 
–  Write segments of assembly code that can be re-used, or 

“called” from different points in the main program. 
–  KISS: Keep It Simple Stupid: 

•  no parameters, no recursion, no locals, no return values 



Procedure Linkage 
Approach I 
•  Problem 

–  procedure must determine where to return after servicing the 
call 

•  Solution: Architecture Support 
–  Add a jump instruction that saves the return address in some 

place known to callee 
•  MIPS: jal instruction saves return address in register $ra 

–  Add an instruction that can jump to return address 
•  MIPS: jr instruction jumps to the address contained in its 

argument register 



int a = 0; 
int b = 0; 
int res = 0; 
main () { 
  a = 12; 
  b = 5; 
  res = 0; 
  div(); 
  printf(“Res = %d”,res); 
} 
void div(void) { 
  while (a >= b) { 
    a = a - b; 
    res ++;       
  } 
} 

Computing Integer Division (Procedure Version) 
Iterative C++ Version 

MIPS  
Assembly Language 

C++ 

 .data 
x:  .word   0 
y:  .word   0 
res:  .word   0 
pf1:  .asciiz "Result = " 
pf2:  .asciiz "Remainder = " 

 .globl  main 
 .text 

main:     # int main() { 
    #   // main assumes registers sx unused 
 la  $s0, x   #   x = 12;  
 li  $s1, 12 
 sw  $s1, 0($s0) 
 la  $s0, y   #   y = 5;  
 li  $s2, 5 
 sw  $s2, 0($s0) 
 la  $s0, res   #   res = 0;  
 li  $s3, 0    
 sw  $s3, 0($s0)  
 jal  div   #   div(); 
 lw  $s3, 0($s0)  
 la  $a0, pf1   #   printf("Result = %d \n"); 
 li  $v0, 4   #   //system call to print_str 
 syscall 
 move  $a0, $s3    
 li  $v0, 1   #   //system call to print_int 
 syscall 
 la  $a0, pf2   #   printf("Remainder = %d \n"); 
 li  $v0, 4   #   //system call to print_str 
 syscall 
 move  $a0, $s1    
 li  $v0, 1   #   //system call to print_int 
 syscall 
 jr  $ra   #   return // TO Operating System 

Function 
Call 



Computing Integer Division (Procedure Version) 
Iterative C++ Version 

int a = 0; 
int b = 0; 
int res = 0; 
main () { 
  a = 12; 
  b = 5; 
  res = 0; 
  div(); 
  printf(“Res = %d”,res); 
} 
void div(void) { 
  while (a >= b) { 
    a = a - b; 
    res ++;       
  } 
} 

MIPS  
Assembly Language 

C++ 

# div function 
# PROBLEM: Must save args and registers before using them 
div:     # void d(void) { 

    #   // Allocate registers for globals 
 la  $s0, x   #   // x in $s1 
 lw  $s1, 0($s0) 
 la  $s0, y   #   // y in $s2 
 lw  $s2, 0($s0) 
 la  $s0, res   #   // res in $s3 
 lw  $s3, 0($s0) 

while:  bgt  $s2, $s1, ewhile  #   while (x <= y) { 
 sub  $s1, $s1, $s2  #     x = x - y 
 addi  $s3, $s3, 1  #     res ++ 
 j  while   #   } 

ewhile:     #   // Update variables in memory 
 la  $s0, x 
 sw  $s1, 0($s0) 
 la  $s0, y 
 sw  $s2, 0($s0) 
 la  $s0, res 
 sw  $s3, 0($s0) 

enddiv:  jr  $ra   #   return; 
    # } 

Function 
Return 



Pending Problems With 
Linkage Approach I 

•  Registers shared by all procedures 
–  procedures may overwrite each others registers  
–  Solution? 

•  Procedures should be able to call other procedures 
–  Procedures overwrite return address register 
–  Solution? 

•  Lack of parameters forces access to globals 
–  callee must know where parameters are stored 
–  Solution? 

•  Need a convention for returning function values 
–  Caller must know where return value is? 
–  Solution? 

•  Recursion requires multiple copies of local data 
–  Solution? 



Recursion Basics 
int fact(int n) { 
    if (n == 0) { 

 return 1; 
    else 

 return (fact(n-1) * n); 
} 

n = 3  
fact(2) 

fact(3) 

n = 2  

n = 1  

fact(1) 

n = 0  

fact(0) 

1 

1 * 1 = 1 

2 * 1 = 2 

3 * 2 = 6 
n = 3  

n = 2  

n = 1  

n = 0  

Why Stacks? 



Pending Problems With 
Linkage Approach I 

•  Registers shared by all procedures 
–  procedures may overwrite each others registers  
–  procedures must save/restore registers in stack 

•  Procedures should be able to call other procedures 
–  Procedures overwrite return address register 
–  save multiple return addresses in stack 

•  Lack of parameters forces access to globals 
–  callee must know where parameters are stored 
–  pass parameters in registers and/or stack 

•  Need a convention for returning function values 
–  Caller must know where return value is? 
–  return values in registers 

•  Recursion requires multiple copies of local data 
–  store multiple procedure activation records How many?  
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The MIPS Architecture 
Memory Model 

32-bit 
byte addressable 

address space 



Review Of Stack Layout 

•  Allocation strategies 
– Static 

•  Code 
•  Globals 
•  Own variables 
•  Explicit constants (including strings, sets, other 

aggregates) 
•  Small scalars may be stored in the instructions 

themselves 



Review Of Stack Layout 

•  Allocation strategies (2) 
– Stack 

•  parameters 
•  local variables 
•  temporaries 
•  bookkeeping information 

– Heap 
•  dynamic allocation 



Solution: Use Stacks of 
Procedure Frames 

•  Stack frame contains: 
– Saved arguments 
– Saved registers 
– Return address 
– Local variables 

main 
stack frame 

div 
stack frame 

OS 

stack growth 



Anatomy of a Stack Frame 

function arguments 

saved registers 

return address 

Contract: Every function must leave the stack the way it found it 

local variables of static size 

caller’s stack frame 

work area 

frame 
Pointer 

$fp in MIPS 

stack 
Pointer 

$sp in MIPS 



Review Of Stack Layout 



Review Of Stack Layout 

•  Contents of a stack frame 
– bookkeeping 

•  return PC (dynamic link) 
•  saved registers 
•  line number 
•  saved display entries 
•  static link 

– arguments and returns 
–  local variables 
–  temporaries 



Calling Sequences 

•  Maintenance of stack is responsibility of 
calling sequence and subroutine prolog 
and epilog – discussed in Chapter 3 
– space is saved by putting as much in the 

prolog and epilog as possible 
–  time may be saved by putting stuff in the 

caller instead, where more information may be 
known 
•  e.g., there may be fewer registers IN USE at the 

point of call than are used SOMEWHERE in the 
callee 



Calling Sequences 
•  Common strategy is to divide registers 

into caller-saves and callee-saves sets 
– caller uses the "callee-saves" registers first 
–  "caller-saves" registers if necessary 

•  Local variables and arguments are 
assigned fixed OFFSETS from the stack 
pointer or frame pointer at compile time 
– some storage layouts use a separate 

arguments pointer 
–  the VAX architecture encouraged this 



Calling Sequences 



Calling Sequences (C on MIPS) 
•  Caller 

– saves into the temporaries and locals area 
any caller-saves registers whose values will 
be needed after the call 

– puts up to 4 small arguments into registers 
$4-$7 (a0-a3) 
•  it depends on the types of the parameters and the 

order in which they appear in the argument list 
– puts the rest of the arguments into the arg 

build area at the top of the stack frame 
– does jal, which puts return address into 

register ra and branches 
•  note that jal, like all branches, has a delay slot 



Calling Sequences (C on MIPS) 

•  In prolog, Callee 
– subtracts framesize from sp 
– saves callee-saves registers used anywhere 

inside callee  
– copies sp to fp 

•  In epilog, Callee 
– puts return value into registers (mem if large)  
– copies fp into sp (see below for rationale) 
–  restores saved registers using sp as base 
– adds to sp to deallocate frame 
– does jra 



Calling Sequences (C on MIPS) 

•  After call, Caller 
– moves return value from register to wherever 

it's needed (if appropriate) 
–  restores caller-saves registers lazily over time, 

as their values are needed 
•  All arguments have space in the stack, 

whether passed in registers or not 
•  The subroutine just begins with some of 

the arguments already cached in registers, 
and 'stale' values in memory 



Calling Sequences (C on MIPS) 

•  This is a normal state of affairs; 
optimizing compilers keep things in 
registers whenever possible, flushing 
to memory only when they run out of 
registers, or when code may attempt 
to access the data through a pointer 
or from an inner scope 



Calling Sequences (C on MIPS) 

•  Many parts of the calling sequence, 
prologue, and/or epilogue can be omitted 
in common cases 
– particularly LEAF routines (those that don't 

call other routines) 
•  leaving things out saves time 
•  simple leaf routines don't use the stack - don't 

even use memory – and are exceptionally fast 



Example: Function Linkage 
using Stack Frames 

int x = 0; 
int y = 0; 
int res = 0; 
main () { 
  x = 12; 
  y = 5; 
  res = div(x,y); 
  printf(“Res = %d”,res); 
} 
int div(int a,int b) { 
  int res = 0; 
  if (a >= b) { 
    res = div(a-b,b) + 1; 
  } 
  else { 
    res = 0; 
  } 
  return res; 
} 

•  Add return values 

• Add parameters 

• Add recursion 

• Add local variables 



Example: Function Linkage using Stack Frames 
div:  sub  $sp, $sp, 28  # Alloc space for 28 byte stack frame 

 sw  $a0, 24($sp)  # Save argument registers 
 sw  $a1, 20($sp)  # a in $a0 
 sw  $ra, 16($sp)  # Save other registers as needed 
 sw  $s1, 12($sp)  # Save callee saved registers ($sx) 
 sw  $s2, 8($sp)   
 sw  $s3, 4($sp) # No need to save $s4, since not used 
 li       $s3, 0 
 sw  $s3, 0($sp) # int res = 0; 
    # Allocate registers for locals 
 lw  $s1, 24($sp)  #   a in $s1 
 lw  $s2, 20($sp)  #   b in $s2 
 lw  $s3, 0($sp) #   res in $s3 

if:  bgt  $s2, $s1, else         # if (a >= b) { 
 sub  $a0, $s1, $s2  #    
 move  $a1, $s2 
 jal  div   #    
 addi  $s3, $v0, 1 #   res = div(a-b, b) + 1; 
 j  endif   # } 

else:  li  $s3, 0   # else { res = 0; } 
endif:      

 sw  $s1, 24($sp)  #   deallocate a from $s1 
 sw  $s2, 20($sp)  #   deallocate b from $s2 
 sw  $s3, 0($sp) #   deallocate res from $s3 
 move  $v0, $s3   # return res 

 lw  $a0, 24($sp)  # Restore saved registers 
 lw  $a1, 20($sp)  # a in $a0 
 lw  $ra, 16($sp)  # Save other registers as needed 
 lw  $s1, 12($sp)  # Save callee saved registers ($sx) 
 lw  $s2, 8($sp)   
 lw  $s3, 4($sp)  # No need to save $s4, since not used 
 addu  $sp, $sp, 28  # pop stack frame 

enddiv:  jr  $ra   # return;  
# 



MIPS: Procedure Linkage 
Summary 
•  First 4 arguments passed in $a0-$a3 
•  Other arguments passed on the stack 
•  Return address passed in $ra 
•  Return value(s) returned in $v0-$v1 
•  Sx registers saved by callee 
•  Tx registers saved by caller 



Parameter Passing 

•  Parameter passing mechanisms have 
three basic implementations 
– value 
– value/result (copying) 
– reference (aliasing) 
– closure/name  

•  Many languages (e.g., Pascal) 
provide value and reference directly 



Parameter Passing 

•  C/C++: functions 
– parameters passed by value (C) 
– parameters passed by reference can be 

simulated with pointers (C)  
void proc(int* x,int y){*x = *x+y } … 
proc(&a,b); 

– or directly passed by reference (C++) 
void proc(int& x, int y) {x = x + y } 
proc(a,b); 



Parameter Passing 

•  Ada goes for semantics: who can do what 
–  In:  callee reads only 
– Out:  callee writes and can then read (formal 

not initialized); actual modified 
–  In out: callee reads and writes; actual modified 

•  Ada in/out is always implemented as 
– value/result for scalars, and either 
– value/result or reference for structured objects 



Parameter Passing 
•  In a language with a reference model of 

variables (Lisp, Clu), pass by reference 
(sharing) is the obvious approach 

•  It's also the only option in Fortran 
•  If you pass a constant, the compiler creates a 

temporary location to hold it 
•  If you modify the temporary, who cares? 

•  Call-by name is an old Algol technique 
•  Think of it as call by textual substitution 

(procedure with all name parameters works 
like macro) - what you pass are hidden 
procedures called THUNKS 



Parameter Passing 



Generic Subroutines and 
Modules 
•  Generic modules or classes are 

particularly valuable for creating 
containers: data abstractions that hold a 
collection of objects 

•  Generic subroutines (methods) are 
needed in generic modules (classes), and 
may also be useful in their own right 



•  Something that should not happen under 
normal or typical circunstances 

•  Programmer knows that it can happen 
•  Programmer cannot predict when will it 

happen 
•  Program MUST be prepared to handle it 

Exception Handling Principles 

What is an Exception? 



•  Wrong user behavior (intentional or not) 
•  Non-existent input files 
•  Badly formatted input files 
•  Overflow conditions 

Exception Handling Principles 

Some sources of exceptions: 

Are programmer mistakes exceptions? 



•  Without language support 
– Set global variable 
– Error condition reference parameters 
– Error return values 
– Error handling subroutines 

•  With language support 
– Exception classes (C++, Java) 

Exception Handling Principles 

Approaches to exception handling: 



Exception Handling Principles 

Challenge of exception handling: 

View 

Controller 

Model 

GUI 

Workflow 

Data Processing Error detected here 

Error handled here 

Java: unhandled exceptions are automatically  
propagated up the procedure call chain 



•  Keep exceptional and normal code 
separate 

•  Uniform mechanism 
•  Automatically propagate exception to 

place where it can best be handled 

Exception Handling Principles 

Advantages of language supported 
exception handling: 



Exception Handling 

•  What is an exception? 
– a hardware-detected run-time error or 

unusual condition detected by software 
•  Examples 

– arithmetic overflow 
– end-of-file on input 
– wrong type for input data 
– user-defined conditions, not necessarily 

errors 



Big Java by Cay Horstmann 
Copyright © 2008 by John Wiley & 

Sons.  All rights reserved. 

•  Example:  
try  
{  
   String filename = . . .;  
   FileReader reader = new FileReader(filename);  
   Scanner in = new Scanner(reader); String input =   
         in.next();  
   int value = Integer.parseInt(input);  
   . . .  
}  
catch (IOException exception)  
{  
   exception.printStackTrace();  
}  
catch (NumberFormatException exception)  
{  
   System.out.println("Input was not a number");  
} 

Catching Exceptions 



Exception Handling 
•  What is an exception handler? 

– code executed when exception occurs 
– may need a different handler for each type of 

exception 
•  Why design in exception handling 

facilities? 
– allow user to explicitly handle errors in a 

uniform manner 
– allow user to handle errors without having to 

check these conditions 
– explicitly in the program everywhere they 

might occur 



Coroutines 
•   Coroutines are execution contexts that 

exist concurrently, but that execute one at 
a time, and that transfer control to each 
other explicitly, by name 

•   Coroutines can be used to implement  
–  iterators (Section 6.5.3)  
–  threads (to be discussed in Chapter 12) 

•  Because they are concurrent (i.e., 
simultaneously started but not completed), 
coroutines cannot share a single stack 



Coroutines 


