
Imperative Programming
The Case of FORTRAN

ICOM 4036
Lecture 5

READINGS: PLP Chapters 6 and 8

The Imperative Paradigm

•  Computer Model consists of bunch of
variables

•  A program is a sequence of state
modifications or assignment statements
that converge to an answer

•  PL provides multiple tools for structuring
and organizing these steps
– E.g. Loops, procedures

This is what you have been doing since INGE 3016!

A Generic Imperative Program

START

Initialize
Variables

Modify
Variables

Converged?

END

yes

no

Imperative Fibonacci Numbers (C)

int fibonacci(int f0, int f1, int n) {
 // Returns the nth element of the Fibonacci sequence
 int fn = f0;
 for (int i=0; i<n; i++) {
 fn = f0 + f1;
 f0 = f1;
 f1 = fn;
 }
 return fn;
}

Examples of (Important)
Imperative Languages

•  FORTRAN (J. Backus IBM late 50’s)
•  Pascal (N. Wirth 70’s)
•  C (Kernigham & Ritchie AT&T late 70’s)
•  C++ (Stroustrup AT&T 80’s)
•  Java (Sun Microsystems late 90’s)
•  C# (Microsoft 00’s)

FORTRAN Highlights

•  For High Level Programming Language
ever implemented

•  First compiler developed by IBM for the
IBM 704 computer

•  Project Leader: John Backus
•  Technology-driven design

– Batch processing, punched cards, small
memory, simple I/O, GUI’s not invented yet

Some Online References

•  Professional Programmer’s Guide to
FORTRAN

•  Getting Started with G77

Links available on course web site

Structure of a FORTRAN program
PROGRAM <name>

 <program_body>

END

SUBROUTINE <name> (args)

 <subroutine_body>

END

FUNCTION <name> (args)

 <function_body>

END
…

Lexical/Syntactic Structure

•  One statement per line
•  First 6 columns reserved
•  Identifiers no longer than 6 symbols
•  Flow control uses numeric labels
•  Unstructured programs possible

Hello World in Fortran
 PROGRAM TINY
 WRITE(UNIT=*, FMT=*) 'Hello, world'
 END

First 6 columns
Reserved

One
Statement
Per line

Designed with the Punched Card in Mind

FORTRAN By Example 2
 PROGRAM LOAN
 WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
 READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
 RATE = PCRATE / 100.0
 REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
 WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY
 END

Implicitly Defined Variables
Type determined by initial letter

I-M ~ INTEGER
A-H, O-Z FLOAT

FORTRAN By Example 2
 PROGRAM LOAN
 WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
 READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
 RATE = PCRATE / 100.0
 REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
 WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY
 END

FORTRAN’s Version
of

Standard Output Device

FORTRAN By Example 2
 PROGRAM LOAN
 WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
 READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
 RATE = PCRATE / 100.0
 REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
 WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY
 END

FORTRAN’s Version
of

Default Format

FORTRAN By Example 3
 PROGRAM REDUCE
 WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
 READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
 RATE = PCRATE / 100.0
 REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
 WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY
 WRITE(UNIT=*, FMT=*)'End of Year Balance'
 DO 15,IYEAR = 1,NYEARS,1
 AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY
 WRITE(UNIT=*, FMT=*)IYEAR, AMOUNT
 15 CONTINUE
 END

A loop consists of two
separate statements

 -> Easy to construct
 unstructured programs

FORTRAN Do Loops
 PROGRAM REDUCE
 WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
 READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
 RATE = PCRATE / 100.0
 REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
 WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY
 WRITE(UNIT=*, FMT=*)'End of Year Balance'
 DO 15,IYEAR = 1,NYEARS,1
 AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY
 WRITE(UNIT=*, FMT=*)IYEAR, AMOUNT
 15 CONTINUE
 END

A loop consists of two
separate statements

 -> Easy to construct
 unstructured
 programs

Enter amount, % rate, years
2000, 9.5, 5
Annual repayments are 520.8728
End of Year Balance
 1 1669.127
 2 1306.822
 3 910.0968
 4 475.6832
 5 2.9800416E-04

FORTRAN Do Loops
 PROGRAM REDUCE
 WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
 READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
 RATE = PCRATE / 100.0
 REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
 WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY
 WRITE(UNIT=*, FMT=*)'End of Year Balance'
 DO 15,IYEAR = 1,NYEARS,1
 AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY
 WRITE(UNIT=*, FMT=*)IYEAR, AMOUNT
 15 CONTINUE
 END

Enter amount, % rate, years
2000, 9.5, 5
Annual repayments are 520.8728
End of Year Balance
 1 1669.127
 2 1306.822
 3 910.0968
 4 475.6832
 5 2.9800416E-04

•  optional increment (can be negative)
•  final value of index variable
•  index variable and initial value
•  end label

FORTRAN Functions
 PROGRAM TRIANG
 WRITE(UNIT=*,FMT=*)'Enter lengths of three sides:'
 READ(UNIT=*,FMT=*) SIDEA, SIDEB, SIDEC
 WRITE(UNIT=*,FMT=*)'Area is ', AREA3(SIDEA,SIDEB,SIDEC)
 END

 FUNCTION AREA3(A, B, C)
* Computes the area of a triangle from lengths of sides
 S = (A + B + C)/2.0
 AREA3 = SQRT(S * (S-A) * (S-B) * (S-C))
 END

•  No recursion
•  Parameters passed by reference only
•  Arrays allowed as parameters
•  No nested procedure definitions – Only two scopes
•  Procedural arguments allowed
•  No procedural return values

Think: why do you think FORTRAN designers made each of these choices?

FORTRAN IF-THEN-ELSE
 REAL FUNCTION AREA3(A, B, C)
* Computes the area of a triangle from lengths of its sides.
* If arguments are invalid issues error message and returns
* zero.
 REAL A, B, C
 S = (A + B + C)/2.0
 FACTOR = S * (S-A) * (S-B) * (S-C)
 IF(FACTOR .LE. 0.0) THEN
 STOP 'Impossible triangle'
 ELSE
 AREA3 = SQRT(FACTOR)
 END IF
 END

NO RECURSION ALLOWED IN FORTRAN77 !!!

FORTRAN ARRAYS
 SUBROUTINE MEANSD(X, NPTS, AVG, SD)
 INTEGER NPTS
 REAL X(NPTS), AVG, SD
 SUM = 0.0
 SUMSQ = 0.0
 DO 15, I = 1,NPTS
 SUM = SUM + X(I)
 SUMSQ = SUMSQ + X(I)**2
 15 CONTINUE
 AVG = SUM / NPTS
 SD = SQRT(SUMSQ - NPTS * AVG)/(NPTS-1)
 END

Subroutines are analogous
 to void functions in C Parameters are passed by reference

 subroutine checksum(buffer,length,sum32)

C Calculate a 32-bit 1's complement checksum of the input buffer, adding
C it to the value of sum32. This algorithm assumes that the buffer
C length is a multiple of 4 bytes.

C a double precision value (which has at least 48 bits of precision)
C is used to accumulate the checksum because standard Fortran does not
C support an unsigned integer datatype.

C buffer - integer buffer to be summed
C length - number of bytes in the buffer (must be multiple of 4)
C sum32 - double precision checksum value (The calculated checksum
C is added to the input value of sum32 to produce the
C output value of sum32)

 integer buffer(*),length,i,hibits
 double precision sum32,word32
 parameter (word32=4.294967296D+09)
C (word32 is equal to 2**32)

C LENGTH must be less than 2**15, otherwise precision may be lost
C in the sum
 if (length .gt. 32768)then
 print *, 'Error: size of block to sum is too large'
 return
 end if

 do i=1,length/4
 if (buffer(i) .ge. 0)then
 sum32=sum32+buffer(i)
 else
C sign bit is set, so add the equivalent unsigned value
 sum32=sum32+(word32+buffer(i))
 end if
 end do

C fold any overflow bits beyond 32 back into the word
10 hibits=sum32/word32
 if (hibits .gt. 0)then
 sum32=sum32-(hibits*word32)+hibits
 go to 10
 end if

 end

Appendix B
From

Original
Fortan I
Manual
(IBM)

WhiteBoard Exercises

•  Computing machine precision
•  Computing the integral of a function
•  Solving a linear system of equations

FORTRAN Heavily used in scientific computing applications

Chapter 6:: Control Flow

Programming Language Pragmatics
Michael L. Scott

Control Flow

•  Basic paradigms for control flow:
– Sequencing (e.g. Begin … End)
– Selection
–  Iteration
– Subroutines, recursion (and related control

abstractions, e.g. iterators)
– Nondeterminacy
– Concurrency

Expression Evaluation

•  Infix, prefix operators
•  Precedence, associativity (see Figure 6.1)

– C has 15 levels - too many to remember
– Pascal has 3 levels - too few for good

semantics
– Fortran has 8
– Ada has 6

•  Ada puts and & or at same level

– Lesson: when unsure, use parentheses!

Expression Evaluation

Expression Evaluation

•  Ordering of operand evaluation (generally
none)

•  Application of arithmetic identities
– distinguish between commutativity, and

(assumed to be safe)
– associativity (known to be dangerous)
(a + b) + c works if a~=maxint and b~=minint and c<0
a + (b + c) does not

–  inviolability of parentheses

Expression Evaluation

•  Short-circuiting
– Consider (a < b) && (b < c):

•  If a >= b there is no point evaluating whether b <
c because (a < b) && (b < c) is
automatically false

– Other similar situations
 if (b != 0 && a/b == c) ...

 if (*p && p->foo) ...

 if (f || messy()) ...

Expression Evaluation
•  Variables as values vs. variables as

references
– value-oriented languages

•  C, Pascal, Ada

–  reference-oriented languages
•  most functional languages (Lisp, Scheme, ML)
•  Clu, Smalltalk

– Algol-68 kinda halfway in-between
– Java deliberately in-between

•  built-in types are values
•  user-defined types are objects - references

Expression Evaluation
•  Expression-oriented vs. statement-

oriented languages
– expression-oriented:

•  functional languages (Lisp, Scheme, ML)
•  Algol-68

– statement-oriented:
•  most imperative languages

– C kinda halfway in-between (distinguishes)
•  allows expression to appear instead of statement

Expression Evaluation
•  Orthogonality

– Features that can be used in any
combination
• Meaning is consistent

if (if b != 0 then a/b == c else false)

then ...

if (if f then true else messy()) then ...

•  Initialization
– Pascal has no initialization facility

(assign)

•  Aggregates
– Compile-time constant values of user-

Expression Evaluation

•  Assignment
– statement (or expression) executed for its side

effect
– assignment operators (+=, -=, etc)

•  handy
•  avoid redundant work (or need for optimization)
•  perform side effects exactly once

– C --, ++
•  postfix form

Expression Evaluation

•  Side Effects
– often discussed in the context of functions
– a side effect is some permanent state change

caused by execution of function
•  some noticeable effect of call other than return

value
•  in a more general sense, assignment statements

provide the ultimate example of side effects
–  they change the value of a variable

Expression Evaluation

•  SIDE EFFECTS ARE FUNDAMENTAL
TO THE WHOLE VON NEUMANN
MODEL OF COMPUTING

•  In (pure) functional, logic, and dataflow
languages, there are no such changes
– These languages are called SINGLE-

ASSIGNMENT languages

Expression Evaluation

•  Several languages outlaw side effects for
functions
– easier to prove things about programs
– closer to Mathematical intuition
– easier to optimize
–  (often) easier to understand

•  But side effects can be nice
– consider rand()

Expression Evaluation
•  Side effects are a particular problem if they

affect state used in other parts of the expression
in which a function call appears
–  It's nice not to specify an order, because it makes it

easier to optimize
–  Fortran says it's OK to have side effects

•  they aren't allowed to change other parts of the expression
containing the function call

•  Unfortunately, compilers can't check this completely, and
most don't at all

•  Sequencing
– specifies a linear ordering on

statements
• one statement follows another

– very imperative, Von-Neuman

Sequencing

•  Selection
– sequential if statements
 if ... then ... else

 if ... then ... elsif ... else

 (cond

 (C1) (E1)

 (C2) (E2)

 ...

 (Cn) (En)
 (T) (Et)

)

Selection

•  Selection
– Fortran computed gotos
–  jump code

•  for selection and logically-controlled loops
•  no point in computing a Boolean value into a register,

then testing it
•  instead of passing register containing Boolean out of

expression as a synthesized attribute, pass inherited
attributes INTO expression indicating where to jump
to if true, and where to jump to if false

Selection

•  Jump is especially useful in the presence
of short-circuiting

•  Example (section 6.4.1 of book):

if ((A > B) and (C > D)) or (E <> F) then

 then_clause

 else

 else_clause

Selection

•  Code generated w/o short-circuiting
(Pascal)

 r1 := A -- load

 r2 := B

 r1 := r1 > r2

 r2 := C
 r3 := D
 r2 := r2 > r3

 r1 := r1 & r2
 r2 := E
 r3 := F

 r2 := r2 $<>$ r3

 r1 := r1 $|$ r2
 if r1 = 0 goto L2

 L1: then_clause -- label not actually used

 goto L3

 L2: else_clause

 L3:

Selection

•  Code generated w/ short-circuiting (C)

 r1 := A
 r2 := B

 if r1 <= r2 goto L4

 r1 := C

 r2 := D
 if r1 > r2 goto L1

 L4: r1 := E

 r2 := F
 if r1 = r2 goto L2

 L1: then_clause

 goto L3

 L2: else_clause
 L3:

Selection

•  Enumeration-controlled
– Pascal or Fortran-style for loops

•  scope of control variable
•  changes to bounds within loop
•  changes to loop variable within loop
•  value after the loop

Iteration

Iteration
•  The goto controversy

– assertion: gotos are needed almost
exclusively to cope with lack of one-and-a-
half loops

– early return from procedure
– exceptions
–  in many years of programming, I can't

remember using one for any other purpose
•  except maybe complicated conditions that can

be separated into a single if-then-else because
of the need for short-circuiting

Recursion

•  Recursion
– equally powerful to iteration
– mechanical transformations back and forth
– often more intuitive (sometimes less)
– naïve implementation less efficient

•  no special syntax required
•  fundamental to functional languages like Scheme

Recursion

•  Tail recursion
– No computation follows recursive call
 /* assume a, b > 0 */

int gcd (int a, int b) {

 if (a == b) return a;

 else if (a > b) return gcd (a - b, b);

 else return gcd (a, b – a);

}

Chapter 8 :: Subroutines
and Control Abstraction

Programming Language Pragmatics
Michael L. Scott

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

48

The MIPS Architecture
ISA at a Glance

•  Reduced Instruction Set Computer
(RISC)

•  32 general purpose 32-bit registers
•  Load-store architecture: Operands in

registers
•  Byte Addressable
•  32-bit address space

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

49

The MIPS Architecture
32 Register Set (32-bit registers)
Register # Reg Name Function

r0 r0 Zero constant

r4-r7 a0-a3 Function arguments

r1 at Reserved for Operating Systems

r30 fp Frame pointer

r28 gp Global memory pointer

r26-r27 k0-k1 Reserved for OS Kernel

r31 ra Function return address

r16-r23 s0-s7 Callee saved registers

r29 sp Stack pointer

r8-r15 t0-t7 Temporary variables

r24-r25 t8-t9 Temporary variables

r2-r3 v0-v1 Function return values

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

50

Simple and uniform 32-bit 3-operand instruction formats

– R Format: Arithmetic/Logic operations on registers

– I Format: Branches, loads and stores

– J Format: Jump Instruction

The MIPS Architecture
Main Instruction Formats

opcode 
6 bits 

rs 
5 bits 

rt 
5 bits 

rd 
5 bits 

shamt 
5 bits 

funct 
6 bits 

opcode 
6 bits 

rs 
5 bits 

rt 
5 bits 

Address/Immediate 
16 bits 

opcode 
6 bits 

rs 
5 bits 

rt 
5 bits 

Address/Immediate 
16 bits 

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

51

MIPS Data Paths

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

52

Mips Packaging

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

53

The MIPS Architecture
 Examples of Native Instruction Set

Instruction
Group

Instruction Function

Arithmetic/

Logic

add $s1,$s2,$s3 $s1 = $s2 + $s3

addi $s1,$s2,K $s1 = $s2 + K

Load/Store lw $s1,K($s2) $s1 = MEM[$s2+K]

sw $s1,K($s2) MEM[$s2+K] = $s1

Jumps and

Conditional
Branches

beq $s1,$s2,K if ($s1=$s2) goto PC + 4 + K

slt $s1,$s2,$s3 if ($s2<$s3) $s1=1 else $s1=0

j K goto K

Procedures jal K $ra = PC + 4; goto K

jr $ra goto $ra

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

54

The SPIM Assembler
 Examples of Pseudo-Instruction Set

Instruction Group Syntax Translates to:
Arithmetic/

Logic

neg $s1, $s2 sub $s1, $r0, $s2

not $s1, $s2 nor $17, $18, $0

Load/Store li $s1, K ori $s1, $0, K

la $s1, K lui $at, 152

ori $s1, $at, -27008

move $s1, $s2

Jumps and

Conditional
Branches

bgt $s1, $s2, K slt $at, $s1, $s2

bne $at, $0, K

sge $s1, $s2, $s3 bne $s3, $s2, foo

 ori $s1, $0, 1

 beq $0, $0, bar

foo: slt $s1, $s3, $s2

bar:

Pseudo Instructions: translated to native instructions by Assembler

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

55

The SPIM Assembler
 Examples of Assembler Directives

Group Directive Function

Memory
Segmentation

.data <addr> Data Segment starting at

.text <addr> Text (program) Segment

.stack <addr> Stack Segment

.ktext <addr> Kernel Text Segment

.kdata <addr> Kernel Data Segment

Data Allocation x: .word <value> Allocates 32-bit variable

x: .byte <value> Allocates 8-bit variable

x: .ascii “hello” Allocates 8-bit cell array

Other .globl x x is external symbol

Assembler Directives: Provide assembler additional info to generate machine code

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

56

Handy MIPS ISA References

•  Appendix A: Patterson & Hennessy

•  SPIM ISA Summary on class website

•  Patterson & Hennessy Back Cover

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

57

Computing Integer Division
Iterative C++ Version

int a = 12;
int b = 4;
int result = 0;
main () {
 while (a >= b) {
 a = a - b;
 result ++;
 }
 }
}

MIPS/SPIM Version

MIPS
Assembly Language

C++

 .data # Use HLL program as a comment

x: .word 12 # int x = 12;

y: .word 4 # int y = 4;

res: .word 0 # int res = 0;

 .globl main

 .text

main: la $s0, x # Allocate registers for globals

 lw $s1, 0($s0) # x in $s1

 lw $s2, 4($s0) # y in $s2

 lw $s3, 8($s0) # res in $s3

while: bgt $s2, $s1, endwhile # while (x >= y) {

 sub $s1, $s1, $s2 # x = x - y;

 addi $s3, $s3, 1 # res ++;

 j while # }

endwhile:

 la $s0, x # Update variables in memory

 sw $s1, 0($s0)

 sw $s2, 4($s0)

 sw $s3, 8($s0)

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

58

Computing Integer Division
Iterative C++ Version

int a = 12;
int b = 4;
int result = 0;
main () {
 while (a >= b) {
 a = a - b;
 result ++;
 }
 }
 printf("Result = %d \n");
}

MIPS/SPIM Version
Input/Output in SPIM

MIPS
Assembly Language

C++

 .data # Use HLL program as a comment

x: .word 12 # int x = 12;

y: .word 4 # int y = 4;

res: .word 0 # int res = 0;
pf1: .asciiz "Result = "

 .globl main

 .text

main: la $s0, x # Allocate registers for globals

 lw $s1, 0($s0) # x in $s1

 lw $s2, 4($s0) # y in $s2

 lw $s3, 8($s0) # res in $s3

while: bgt $s2, $s1, endwhile # while (x >= y) {

 sub $s1, $s1, $s2 # x = x - y;

 addi $s3, $s3, 1 # res ++;

 j while # }

endwhile:
 la $a0, pf1 # printf("Result = %d \n");
 li $v0, 4 # //system call to print_str
 syscall
 move $a0, $s3
 li $v0, 1 # //system call to print_int
 syscall

 la $s0, x # Update variables in memory

 sw $s1, 0($s0)

 sw $s2, 4($s0)

 sw $s3, 8($s0)

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

59

SPIM Assembler Abstractions

•  Symbolic Labels
–  Instruction addresses and memory

locations
•  Assembler Directives

–  Memory allocation
–  Memory segments

•  Pseudo-Instructions
–  Extend native instruction set without

complicating arquitecture
•  Macros

Implementing Procedures

•  Why procedures?
–  Abstraction
–  Modularity
–  Code re-use

•  Initial Goal
–  Write segments of assembly code that can be re-used, or

“called” from different points in the main program.
–  KISS: Keep It Simple Stupid:

•  no parameters, no recursion, no locals, no return values

Procedure Linkage
Approach I
•  Problem

–  procedure must determine where to return after servicing the
call

•  Solution: Architecture Support
–  Add a jump instruction that saves the return address in some

place known to callee
•  MIPS: jal instruction saves return address in register $ra

–  Add an instruction that can jump to return address
•  MIPS: jr instruction jumps to the address contained in its

argument register

int a = 0;
int b = 0;
int res = 0;
main () {
 a = 12;
 b = 5;
 res = 0;
 div();
 printf(“Res = %d”,res);
}
void div(void) {
 while (a >= b) {
 a = a - b;
 res ++;
 }
}

Computing Integer Division (Procedure Version)
Iterative C++ Version

MIPS
Assembly Language

C++

 .data
x: .word 0
y: .word 0
res: .word 0
pf1: .asciiz "Result = "
pf2: .asciiz "Remainder = "

 .globl main
 .text

main: # int main() {
 # // main assumes registers sx unused
 la $s0, x # x = 12;
 li $s1, 12
 sw $s1, 0($s0)
 la $s0, y # y = 5;
 li $s2, 5
 sw $s2, 0($s0)
 la $s0, res # res = 0;
 li $s3, 0
 sw $s3, 0($s0)
 jal div # div();
 lw $s3, 0($s0)
 la $a0, pf1 # printf("Result = %d \n");
 li $v0, 4 # //system call to print_str
 syscall
 move $a0, $s3
 li $v0, 1 # //system call to print_int
 syscall
 la $a0, pf2 # printf("Remainder = %d \n");
 li $v0, 4 # //system call to print_str
 syscall
 move $a0, $s1
 li $v0, 1 # //system call to print_int
 syscall
 jr $ra # return // TO Operating System

Function
Call

Computing Integer Division (Procedure Version)
Iterative C++ Version

int a = 0;
int b = 0;
int res = 0;
main () {
 a = 12;
 b = 5;
 res = 0;
 div();
 printf(“Res = %d”,res);
}
void div(void) {
 while (a >= b) {
 a = a - b;
 res ++;
 }
}

MIPS
Assembly Language

C++

div function
PROBLEM: Must save args and registers before using them
div: # void d(void) {

 # // Allocate registers for globals
 la $s0, x # // x in $s1
 lw $s1, 0($s0)
 la $s0, y # // y in $s2
 lw $s2, 0($s0)
 la $s0, res # // res in $s3
 lw $s3, 0($s0)

while: bgt $s2, $s1, ewhile # while (x <= y) {
 sub $s1, $s1, $s2 # x = x - y
 addi $s3, $s3, 1 # res ++
 j while # }

ewhile: # // Update variables in memory
 la $s0, x
 sw $s1, 0($s0)
 la $s0, y
 sw $s2, 0($s0)
 la $s0, res
 sw $s3, 0($s0)

enddiv: jr $ra # return;
 # }

Function
Return

Pending Problems With
Linkage Approach I

•  Registers shared by all procedures
–  procedures may overwrite each others registers
–  Solution?

•  Procedures should be able to call other procedures
–  Procedures overwrite return address register
–  Solution?

•  Lack of parameters forces access to globals
–  callee must know where parameters are stored
–  Solution?

•  Need a convention for returning function values
–  Caller must know where return value is?
–  Solution?

•  Recursion requires multiple copies of local data
–  Solution?

Recursion Basics
int fact(int n) {
 if (n == 0) {

 return 1;
 else

 return (fact(n-1) * n);
}

n = 3
fact(2)

fact(3)

n = 2

n = 1

fact(1)

n = 0

fact(0)

1

1 * 1 = 1

2 * 1 = 2

3 * 2 = 6
n = 3

n = 2

n = 1

n = 0

Why Stacks?

Pending Problems With
Linkage Approach I

•  Registers shared by all procedures
–  procedures may overwrite each others registers
–  procedures must save/restore registers in stack

•  Procedures should be able to call other procedures
–  Procedures overwrite return address register
–  save multiple return addresses in stack

•  Lack of parameters forces access to globals
–  callee must know where parameters are stored
–  pass parameters in registers and/or stack

•  Need a convention for returning function values
–  Caller must know where return value is?
–  return values in registers

•  Recursion requires multiple copies of local data
–  store multiple procedure activation records How many?

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

67

The MIPS Architecture
Memory Model

32-bit
byte addressable

address space

Review Of Stack Layout

•  Allocation strategies
– Static

•  Code
•  Globals
•  Own variables
•  Explicit constants (including strings, sets, other

aggregates)
•  Small scalars may be stored in the instructions

themselves

Review Of Stack Layout

•  Allocation strategies (2)
– Stack

•  parameters
•  local variables
•  temporaries
•  bookkeeping information

– Heap
•  dynamic allocation

Solution: Use Stacks of
Procedure Frames

•  Stack frame contains:
– Saved arguments
– Saved registers
– Return address
– Local variables

main
stack frame

div
stack frame

OS

stack growth

Anatomy of a Stack Frame

function arguments

saved registers

return address

Contract: Every function must leave the stack the way it found it

local variables of static size

caller’s stack frame

work area

frame
Pointer

$fp in MIPS

stack
Pointer

$sp in MIPS

Review Of Stack Layout

Review Of Stack Layout

•  Contents of a stack frame
– bookkeeping

•  return PC (dynamic link)
•  saved registers
•  line number
•  saved display entries
•  static link

– arguments and returns
–  local variables
–  temporaries

Calling Sequences

•  Maintenance of stack is responsibility of
calling sequence and subroutine prolog
and epilog – discussed in Chapter 3
– space is saved by putting as much in the

prolog and epilog as possible
–  time may be saved by putting stuff in the

caller instead, where more information may be
known
•  e.g., there may be fewer registers IN USE at the

point of call than are used SOMEWHERE in the
callee

Calling Sequences
•  Common strategy is to divide registers

into caller-saves and callee-saves sets
– caller uses the "callee-saves" registers first
–  "caller-saves" registers if necessary

•  Local variables and arguments are
assigned fixed OFFSETS from the stack
pointer or frame pointer at compile time
– some storage layouts use a separate

arguments pointer
–  the VAX architecture encouraged this

Calling Sequences

Calling Sequences (C on MIPS)
•  Caller

– saves into the temporaries and locals area
any caller-saves registers whose values will
be needed after the call

– puts up to 4 small arguments into registers
$4-$7 (a0-a3)
•  it depends on the types of the parameters and the

order in which they appear in the argument list
– puts the rest of the arguments into the arg

build area at the top of the stack frame
– does jal, which puts return address into

register ra and branches
•  note that jal, like all branches, has a delay slot

Calling Sequences (C on MIPS)

•  In prolog, Callee
– subtracts framesize from sp
– saves callee-saves registers used anywhere

inside callee
– copies sp to fp

•  In epilog, Callee
– puts return value into registers (mem if large)
– copies fp into sp (see below for rationale)
–  restores saved registers using sp as base
– adds to sp to deallocate frame
– does jra

Calling Sequences (C on MIPS)

•  After call, Caller
– moves return value from register to wherever

it's needed (if appropriate)
–  restores caller-saves registers lazily over time,

as their values are needed
•  All arguments have space in the stack,

whether passed in registers or not
•  The subroutine just begins with some of

the arguments already cached in registers,
and 'stale' values in memory

Calling Sequences (C on MIPS)

•  This is a normal state of affairs;
optimizing compilers keep things in
registers whenever possible, flushing
to memory only when they run out of
registers, or when code may attempt
to access the data through a pointer
or from an inner scope

Calling Sequences (C on MIPS)

•  Many parts of the calling sequence,
prologue, and/or epilogue can be omitted
in common cases
– particularly LEAF routines (those that don't

call other routines)
•  leaving things out saves time
•  simple leaf routines don't use the stack - don't

even use memory – and are exceptionally fast

Example: Function Linkage
using Stack Frames

int x = 0;
int y = 0;
int res = 0;
main () {
 x = 12;
 y = 5;
 res = div(x,y);
 printf(“Res = %d”,res);
}
int div(int a,int b) {
 int res = 0;
 if (a >= b) {
 res = div(a-b,b) + 1;
 }
 else {
 res = 0;
 }
 return res;
}

•  Add return values

• Add parameters

• Add recursion

• Add local variables

Example: Function Linkage using Stack Frames
div: sub $sp, $sp, 28 # Alloc space for 28 byte stack frame

 sw $a0, 24($sp) # Save argument registers
 sw $a1, 20($sp) # a in $a0
 sw $ra, 16($sp) # Save other registers as needed
 sw $s1, 12($sp) # Save callee saved registers ($sx)
 sw $s2, 8($sp)
 sw $s3, 4($sp) # No need to save $s4, since not used
 li $s3, 0
 sw $s3, 0($sp) # int res = 0;
 # Allocate registers for locals
 lw $s1, 24($sp) # a in $s1
 lw $s2, 20($sp) # b in $s2
 lw $s3, 0($sp) # res in $s3

if: bgt $s2, $s1, else # if (a >= b) {
 sub $a0, $s1, $s2 #
 move $a1, $s2
 jal div #
 addi $s3, $v0, 1 # res = div(a-b, b) + 1;
 j endif # }

else: li $s3, 0 # else { res = 0; }
endif:

 sw $s1, 24($sp) # deallocate a from $s1
 sw $s2, 20($sp) # deallocate b from $s2
 sw $s3, 0($sp) # deallocate res from $s3
 move $v0, $s3 # return res

 lw $a0, 24($sp) # Restore saved registers
 lw $a1, 20($sp) # a in $a0
 lw $ra, 16($sp) # Save other registers as needed
 lw $s1, 12($sp) # Save callee saved registers ($sx)
 lw $s2, 8($sp)
 lw $s3, 4($sp) # No need to save $s4, since not used
 addu $sp, $sp, 28 # pop stack frame

enddiv: jr $ra # return;

MIPS: Procedure Linkage
Summary
•  First 4 arguments passed in $a0-$a3
•  Other arguments passed on the stack
•  Return address passed in $ra
•  Return value(s) returned in $v0-$v1
•  Sx registers saved by callee
•  Tx registers saved by caller

Parameter Passing

•  Parameter passing mechanisms have
three basic implementations
– value
– value/result (copying)
– reference (aliasing)
– closure/name

•  Many languages (e.g., Pascal)
provide value and reference directly

Parameter Passing

•  C/C++: functions
– parameters passed by value (C)
– parameters passed by reference can be

simulated with pointers (C)
void proc(int* x,int y){*x = *x+y } …
proc(&a,b);

– or directly passed by reference (C++)
void proc(int& x, int y) {x = x + y }
proc(a,b);

Parameter Passing

•  Ada goes for semantics: who can do what
–  In: callee reads only
– Out: callee writes and can then read (formal

not initialized); actual modified
–  In out: callee reads and writes; actual modified

•  Ada in/out is always implemented as
– value/result for scalars, and either
– value/result or reference for structured objects

Parameter Passing
•  In a language with a reference model of

variables (Lisp, Clu), pass by reference
(sharing) is the obvious approach

•  It's also the only option in Fortran
•  If you pass a constant, the compiler creates a

temporary location to hold it
•  If you modify the temporary, who cares?

•  Call-by name is an old Algol technique
•  Think of it as call by textual substitution

(procedure with all name parameters works
like macro) - what you pass are hidden
procedures called THUNKS

Parameter Passing

Generic Subroutines and
Modules
•  Generic modules or classes are

particularly valuable for creating
containers: data abstractions that hold a
collection of objects

•  Generic subroutines (methods) are
needed in generic modules (classes), and
may also be useful in their own right

•  Something that should not happen under
normal or typical circunstances

•  Programmer knows that it can happen
•  Programmer cannot predict when will it

happen
•  Program MUST be prepared to handle it

Exception Handling Principles

What is an Exception?

•  Wrong user behavior (intentional or not)
•  Non-existent input files
•  Badly formatted input files
•  Overflow conditions

Exception Handling Principles

Some sources of exceptions:

Are programmer mistakes exceptions?

•  Without language support
– Set global variable
– Error condition reference parameters
– Error return values
– Error handling subroutines

•  With language support
– Exception classes (C++, Java)

Exception Handling Principles

Approaches to exception handling:

Exception Handling Principles

Challenge of exception handling:

View

Controller

Model

GUI

Workflow

Data Processing Error detected here

Error handled here

Java: unhandled exceptions are automatically
propagated up the procedure call chain

•  Keep exceptional and normal code
separate

•  Uniform mechanism
•  Automatically propagate exception to

place where it can best be handled

Exception Handling Principles

Advantages of language supported
exception handling:

Exception Handling

•  What is an exception?
– a hardware-detected run-time error or

unusual condition detected by software
•  Examples

– arithmetic overflow
– end-of-file on input
– wrong type for input data
– user-defined conditions, not necessarily

errors

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley &

Sons. All rights reserved.

•  Example:
try
{
 String filename = . . .;
 FileReader reader = new FileReader(filename);
 Scanner in = new Scanner(reader); String input =
 in.next();
 int value = Integer.parseInt(input);
 . . .
}
catch (IOException exception)
{
 exception.printStackTrace();
}
catch (NumberFormatException exception)
{
 System.out.println("Input was not a number");
}

Catching Exceptions

Exception Handling
•  What is an exception handler?

– code executed when exception occurs
– may need a different handler for each type of

exception
•  Why design in exception handling

facilities?
– allow user to explicitly handle errors in a

uniform manner
– allow user to handle errors without having to

check these conditions
– explicitly in the program everywhere they

might occur

Coroutines
•  Coroutines are execution contexts that

exist concurrently, but that execute one at
a time, and that transfer control to each
other explicitly, by name

•  Coroutines can be used to implement
–  iterators (Section 6.5.3)
–  threads (to be discussed in Chapter 12)

•  Because they are concurrent (i.e.,
simultaneously started but not completed),
coroutines cannot share a single stack

Coroutines

