Imperative Programming
The Case of FORTRAN

ICOM 4036
Lecture 5

READINGS: PLP Chapters 6 and 8

The Imperative Paradigm

« Computer Model consists of bunch of
variables

* A program is a sequence of state
modifications or assignment statements
that converge to an answer

* PL provides multiple tools for structuring
and organizing these steps

— E.g. Loops, procedures

This is what you have been doing since INGE 3016!

A Generic Imperative Program

no

Imperative Fibonacci Numbers (C)

int fibonacci(int £0, int £f1, int n) {
// Returns the nth element of the Fibonacci sequence
int fn = £0;
for (int i=0; i<n; i++) {

fn = £f0 + £1;
fo = £1;
fl1 = £n;

Examples of (Important)
Imperative Languages

FORTRAN (J. Backus IBM late 50’s)
Pascal (N. Wirth 70°s)

C (Kernigham & Ritchie AT&T late 70’s)
C++ (Stroustrup AT&T 80’s)

Java (Sun Microsystems late 90's)

C# (Microsoft 00’s)

FORTRAN Highlights

* For High Level Programming Language
ever implemented

* First compiler developed by IBM for the
IBM 704 computer

* Project Leader: John Backus

* Technology-driven design

— Batch processing, punched cards, small
memory, simple I/O, GUI's not invented yet

Some Online References

* Professional Programmer’s Guide to
FORTRAN

. Getting Started with G77

Links available on course web site

Structure of a FORTRAN program

PROGRAM <name>

<program_body>

END

SUBROUTINE <name> (args)
<subroutine_body>

END

FUNCTION <name> (args)
<function_body>

END

Lexical/Syntactic Structure

* One statement per line

* First 6 columns reserved

* |dentifiers no longer than 6 symbols
* Flow control uses numeric labels

* Unstructured programs possible

Hello World In Fortran

PROGRAM TINY
WRITE (UNIT=*, FMT=*) 'Hello, world'
END

—

First 6 columns

Reserved
Designed with the Punched Card in Mind

Uatased Umniled A oeviuwrs ol CL g

EROC30ICEDRIRCUIDDERdDYCECRIDOIDLERIRINCOOIOGENDETLO0RYSELDDYTED

MBS EsIaINNN NN IAR YDA PEBBAGUULBEREGURNIZYALR I Y ar ue bRrvUunsaAanRINARD
111111 B REEREERRERERE IR EREER RN RREEEERE) | i 1 IRERR R
) } 111211 IREERRRRRRPIR
333315333321411.3 i11 3)
4 14 1!0‘: EEREF $4CS302q L8200
] L) LI » LE5S555% 5!)l "_vt'_t_d 13‘ LEEELSR Y '
tssatigsfe 3 1 33 JOETLISREEaCOEREOUEREGTT £ [
i1 Y "l.‘tlllt -l'.’ }:‘I" JiJirrrrrirrendiina) i) 111 |
SRR R A R N R RN R E RN R R R RN R RN AR R A RN Y SRR RE AR R RREERRRRRE
Ll??.'i'.xbn'_"&ﬁ?’.'li?'.-:i!H?'.'J']]G)J':f'.Z:."..2’;5’)3?'.-"331'-".Z‘;"'.'(.!-S-;i"ﬂr. $3
4 s LAl TEMNS l'ln:?:n.'."!;f.:' —“’1‘1!.6':4"-;"-:" FRAPJOQULETaQRIIRUBBSITUdDREES ~'.1..,'.n.x 1‘/';'-.‘\. L) KJ

One
Statement
Per line

FORTRAN By Example 2

PROGRAM LOAN
WRITE (UNIT=*, FMT=*) 'Enter amount, % rate, years'
AD (UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
PCRATE / 100.0
= RATE * AMOUNT / (1.0 - (1.0+RATE) ** (-NYEARS))
(UNIT=*, FMT=%*) 'Annual repayments are ', REPAY

Implicitly Defined Variables
Type determined by initial letter
I-M ~ INTEGER

A-H, O-Z FLOAT
" Y,

FORTRAN By Example 2

PROGRAM
WRITE
READ (UNIT=*
RATE = PCRAT)
REPAY = RATE
WRITE (UNIT=*,

END

, FMT=%*) 'Enter amount, % rate, years'
FMT=*) AMOUNT, PCRATE, NYEARS

OUNT / (1.0 - (1.0+RATE) ** (-NYEARS))
) 'Annual repayments are

FORTRAN’s Version
of
Standard Output Device

~

REPAY

FORTRAN By Example 2

PROGRAM LOAN
WRITE (UNIT=%*,
READ (UNIT=*, FM
RATE = PCRATE /
REPAY = RATE *
WRITE (UNIT=%*,

END

) AMOUNT, PCRATE, NYEARS
00.0

=%*) 'Annual repayments are ',

'Enter amount, % rate, years'

OUNT / (1.0 - (1.0+RATE)** (-NYEARS))
REPAY

|

FORTRAN'’s Version
of
Default Format

FORTRAN By Example 3

PROGRAM REDUCE

WRITE (UNIT=*, FMT=*)'Enter amount, % rate, years'

READ (UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS

RATE = PCRATE / 100.0

REPAY = RATE * AMOUNT / (1.0 - (1.0+4+RATE)** (-NYEARS))

WRITE (UNIT=*, FMT=*) 'Annual repayments are ', REPAY

WRITE (UNIT=*, FMT=*)'End of Year Balance'

DO 15,IYEAR = 1,NYEARS,1
AMOUNT = AMOUNT + (AMQUNT * RATE) - REPAY
WRITE (UNIT=*, FMT=*)IYEAR, AMOUNT

15 CONTINUE
END

A loop consists of two
separate statements
-> Easy to construct
unstructured programs

FORTRAN Do Loops

PROGRAM REDUCE
WRITE (UNIT=*, FMT=*)'Enter amount, % rate, years'
READ (UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS

RATE = PCRATE / 100.0

REPAY = RATE * AMOUNT / (1.0 - (1.0+4+RATE)** (-NYEARS))

WRITE (UNIT=*, FMT=*) 'Annual repayments are ', REPAY

WRITE (UNIT=*, FMT=*)'End of Year Balance'

DO 15,IYEAR = 1,NYEARS,1
AMOUNT = AMOUNT + (AM T * RATE) - REPAY
WRITE (UNIT=*, FMT=*)IYEAR,

15 CONTINUE

END T

Enter amount, $ rate, years \

2000, 9.5, 5 A loop consists of two
Annual repayments are 520.8728 Separate statements
End of Year Balance

1 1669 . 127 -> Easy to construct

1306.822 unstructured

2

3 910.0968 programs
4 475.6832

5

2.9800416E-04

FORTRAN Do Loops

PROGRAM REDUCE
WRITE (UNIT=*, FMT=*)'Enter amount, % rate, years'
READ (UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
RATE = PCRATE / 100.0
REPAY = RATE * AMOUNT / (1.0 - (1.0+4+RATE)** (-NYEARS))
WRITE (UNIT=*, FMT=*) 'Annual repayments are ', REPAY

NI T=x* of Year Balance'

WRITE (U
0 (15,TvEAR ©

AMO AMOUNT * RATE) - REPAY
WRITE = T=*) .WEAR, AMOUNT
15 CONTINUE
END
Enter amount, % rate, years
2000, 9.5, 5 ~ optional increment (can be negative)
Annual repayments are 520.8728 " final value of index variable
End of Year Balance \:\indexvaﬁabkaandinMaIvaMe
1 1669.127 "~ end label

2 1306.822
3 910.0968
4 475.6832
5 2.9800416E-04

FORTRAN Functions

PROGRAM TRIANG

WRITE (UNIT=* ,FMT=%*) 'Enter lengths of three sides:'

READ (UNIT=* ,FMT=*) SIDEA, SIDEB, SIDEC

WRITE (UNIT=* ,FMT=*) 'Area is ', AREA3(SIDEA,SIDEB,SIDEC)
END

FUNCTION AREA3 (A, B, C)
* Computes the area of a triangle from lengths of sides
S=(AA+B+C)/2.0
AREA3 = SQRT(S * (S-A) * (S-B) * (S-C))
END

* No recursion

» Parameters passed by reference only

* Arrays allowed as parameters

* No nested procedure definitions — Only two scopes
* Procedural arguments allowed

* No procedural return values

Think: why do you think FORTRAN designers made each of these choices?

FORTRAN IF-THEN-ELSE

REAL FUNCTION AREA3 (A, B, C)
Computes the area of a triangle from lengths of its sides.
If arguments are invalid issues error message and returns
zZero.
REAL A, B, C
S=(AA+B+C)/2.0
FACTOR = S * (S-A) * (S-B) * (S-C)
IF (FACTOR .LE. 0.0) THEN
STOP 'Impossible triangle'
ELSE
AREA3 = SQRT (FACTOR)
END IF
END

NO RECURSION ALLOWED IN FORTRANT77 !l

FORTRAN ARRAYS

SUBROUTINE MEANSDC(\XJ NPTS, AVG, SD)

INTEGER NPTS
REAL X (NPTS), AVG, SD
SUM = 0.0
SUMSQ = 0.0
DO 15, I = 1,NPTS
SUM = SUM + X(I)
SUMSQ = SUMSQ + X (I)**2
15 CONTINUE
AVG = SUM / NPTS

END

SD = SQRT (SUMSQ - NPTS * AVG)/ (NPTS-1)

|

Subroutines are analogous

Parameters are passed by reference

to void functions in C

subroutine checksum(buffer,length,sum32)

Cc
Cc
o

OO0

O0O000

Calculate a 32-bit 1's complement checksum of the input buffer, adding
it to the value of sum32. This algorithm assumes that the buffer
length is a multiple of 4 bytes.

a double precision value (which has at least 48 bits of precision)
is used to accumulate the checksum because standard Fortran does not
support an unsigned integer datatype.

buffer - integer buffer to be summed

length - number of bytes in the buffer (must be multiple of 4)

sum32 - double precision checksum value (The calculated checksum
is added to the input value of sum32 to produce the

output value of sum32)

integer buffer(*),length,i,hibits

double precision sum32,word32

parameter (word32=4.294967296D+09)
(word32 is equal to 2**32)

LENGTH must be less than 2**15, otherwise precision may be lost
in the sum
if (length .gt. 32768)then
print *, 'Error: size of block to sum is too large’
return
end if

do i=1,length/4
if (buffer(i) .ge. 0)then
sum32=sum32+buffer(i)
else
sign bit is set, so add the equivalent unsigned value
sum32=sum32+(word32+buffer(i))
end if
end do

fold any overflow bits beyond 32 back into the word
hibits=sum32/word32
if (hibits .gt. 0)then
sum32=sum32-(hibits*word32)+hibits
go to 10
end if

end

Appendix B
From
Original
Fortan |
Manual
(IBM)

APPENDIX B. TABLE OF FORTRAN STATEMENTS

STATEMENT

NORMAL SEQUENCING
a.=-b Next executable statement B
GO TO n Statement n ' ' -
GO TO n, (n,,r]z,. ; .,nm)ﬂ Si&ément last assigned
ASSIGN i TO n Wl’\lext executable statement =
GO TO (ny,Ng,...,Nm), i Statement n;
IF (a) ny,ng,n, a Statement ny,n;,n, as a less than, =, or greater than 0
EENS'E LIGHT i Next executable statement B

IF (SENSE LIGHT i) my,n,
IF (SENSE SWITCH i) ny,n,
IF ACCUMULATOR OVERFLOW n,,n,

Statement ny,n, as Sénse Light i ON or OFF
i “ “ as Sense Switch i DOWN or UP

a5 Accumulator Overflow trigger ON or OFF

IF QUOTIENT OVERFLOW ny,n,

% as MQ Overflow trigger ON or OFF

IF DIVIDE CHECK ny,n,

“ ' as Divide Check trigger ON or OFF

PAUSE or PAUSE n

Next executable §tatement

STOP or STOP n

Terminates program

66 n'|7=7m,,m,; DO niirf_—”r'nhmz,ma Next executable staAtement
CoNTINE o v b
FORMAT (Specification) Not executed

READ n, Lis(Next executable statement

READ INPUT TAPE |, n, List

PUNCH n, List

PRINT n, List
WRITE OUTPUT TAPE i, n, List

READ TAPE i, List

READ DRUM i, j, List

WRITE TAPE i, List

WRITE DRUM i, j, List

END FILE i

REWIND i

BACKSPACE i

DIMENSION v, v, v,
EQUIVALENCE (a,b,c,..), (d,ef,..), ...

Not executed

FREQUENGY n(i,j,.), mk,..), ...

WhiteBoard Exercises

« Computing machine precision
« Computing the integral of a function
* Solving a linear system of equations

FORTRAN Heavily used in scientific computing applications

Chapter 6:: Control Flow

Programming Language Pragmatics

Michael L. Scott

Control Flow

» Basic paradigms for control flow:
— Sequencing (e.g. Begin ... End)
— Selection
— Iteration

— Subroutines, recursion (and related control
abstractions, e.g. iterators)

— Nondeterminacy
— Concurrency

Expression Evaluation

* Infix, prefix operators

* Precedence, associativity (see Figure 6.1)
— C has 15 levels - too many to remember

— Pascal has 3 levels - too few for good
semantics

— Fortran has 8
— Ada has 6

« Ada puts and & or at same level

— Lesson: when unsure, use parentheses!

Expression Evaluation

Fortran Pascal ® Ada
T, == i[)().\'l—ill(',. dec.)

* ok not ++. == (pre-inc.. dec.). abs (absolute value),
+. — {unary), not. **

. * (address. contents of).

— R

. 7 (logical, bit-wise not)

*, /

*, /.

div, mod. and

* (binarv). /.
% (modulo division)

*_ /. mod, rem

+, — (unary
and binary)

+, = (unary and
binary), or

+, = (binary)

+. — (unaryv)

<L, >>
(left and right bit shift)

. = (binary),

e +

{concatenation)

.eq., .ne.. .1t..
de; gt wges

(comparisons)

<, <=, >, >=

|.i||(-<ill;||il_\' Lests)

]
~
Il
A
A
]
A\
v
]

.not.

==, != (equality tests)

& (bit-wise and)

~ (bit-wise exclusive or)

| (]lil-\‘\‘ix(' inclusive or)

.and.

&& (logical and)

and. or. xor

(logical operators)

.OI.

[l (logical or)

.eqv.,

(logical comparisons)

.neqv.

7 (if ... then...else)

= 4=, -= %= [=, /°=
>>=, KL=, &=, "= |=

(assignment)

Figure G.1:

, (sequencing)

Operator precedence levels in Fortran, Pascal, C, and Ada.

operators at the top of the ficure group most tightly.

The

Expression Evaluation

* Ordering of operand evaluation (generally
none)

* Application of arithmetic identities

— distinguish between commutativity, and
(assumed to be safe)

— associativity (known to be dangerous)

(a + b) + cworksif a~=maxint and b~=minint and c<0
a + (b + c) does not

— inviolability of parentheses

Expression Evaluation

* Short-circuiting
— Consider (a < b) && (b < ¢):
* If a >= b there is no point evaluating whether b <
c because (a < b) && (b < c) s
automatically false
— Other similar situations
if (b !'= 0 && a/b == ¢)
if (*p && p->foo)
if (f || messy())

Expression Evaluation

* Variables as values vs. variables as
references
— value-oriented languages
» C, Pascal, Ada

— reference-oriented languages
« most functional languages (Lisp, Scheme, ML)

e Clu, Smalltalk
— Algol-68 kinda halfway in-between

— Java deliberately in-between

* built-in types are values
 user-defined types are objects - references

Expression Evaluation

» Expression-oriented vs. statement-
oriented languages

— expression-oriented:
« functional languages (Lisp, Scheme, ML)
 Algol-68

— statement-oriented:

* most imperative languages

— C kinda halfway in-between (distinguishes)
* allows expression to appear instead of statement

Expression Evaluation
» Orthogonality

— Features that can be used in any

combination
* Meaning is consistent

if (1f b !'= 0 then a/b == c else false)
then ...

if (if f then true else messy()) then ...

e |nitialization

—Pascal has no initialization facility
(assign)

* Aggregates

Expression Evaluation

* Assignment

— statement (or expression) executed for its side
effect

— assignment operators (+=, -=, etc)

* handy
 avoid redundant work (or need for optimization)
 perform side effects exactly once

—C -, ++

* postfix form

Expression Evaluation

e Side Effects

— often discussed in the context of functions

— a side effect is some permanent state change
caused by execution of function

 some noticeable effect of call other than return
value

* In a more general sense, assignment statements
provide the ultimate example of side effects
— they change the value of a variable

Expression Evaluation

» SIDE EFFECTS ARE FUNDAMENTAL
TO THE WHOLE VON NEUMANN
MODEL OF COMPUTING

* In (pure) functional, logic, and dataflow
languages, there are no such changes

— These languages are called SINGLE-
ASSIGNMENT languages

Expression Evaluation

» Several languages outlaw side effects for
functions

— easier to prove things about programs
— closer to Mathematical intuition

— easler to optimize

— (often) easier to understand

 But side effects can be nice
— consider rand()

Expression Evaluation

« Side effects are a particular problem if they
affect state used in other parts of the expression
In which a function call appears

— It's nice not to specify an order, because it makes it
easier to optimize

— Fortran says it's OK to have side effects

 they aren't allowed to change other parts of the expression
containing the function call

» Unfortunately, compilers can't check this completely, and
most don't at all

Sequencing

* Sequencing

—specifies a linear ordering on
statements

* one statement follows another

—very imperative, Von-Neuman

Selection

¢ Selection
— sequential if statements

if ... then ...

if ... then ...

(cond
(Cl) (E1)
(C2) (E2)
(Cn) (En)

else

elsif ...

else

Selection

» Selection
— Fortran computed gotos
— jump code
» for selection and logically-controlled loops

* no point in computing a Boolean value into a register,
then testing it

* instead of passing register containing Boolean out of
expression as a synthesized attribute, pass inherited
attributes INTO expression indicating where to jump
to if true, and where to jump to if false

Selection

« Jump is especially useful in the presence
of short-circuiting

 Example (section 6.4.1 of book):

if ((A > B) and (C > D)) or (E <> F) then
then clause
else

else clause

Selection

» Code generated w/o short-circuiting
(Pascal)

rl := A -—- load
r2 := B
rl := rl > r2
r2 := C
r3 := D
r2 := r2 > r3
rl := rl & xr2
r2 := E
r3 :=F
r2 := r2 $<>$ r3
rl :=rl $|S r2
if r1 = 0 goto L2
Ll: then clause -— label not actually used
goto L3
L2: else clause

L3:

Selection

* Code generated w/ short-circuiting (C)

rl := A

r2 := B

1if rl <= r2 goto L4

rl :=C

r2 := D

if rl > r2 goto Ll
L4: rl := E

r2 := F

1if rl = r2 goto L2
Ll: then clause

goto L3
L2: else clause

L3:

lteration

* Enumeration-controlled

—Pascal or Fortran-style for loops
 scope of control variable
» changes to bounds within loop
« changes to loop variable within loop
* value after the loop

lteration

* The goto controversy

— assertion: gotos are needed almost
exclusively to cope with lack of one-and-a-
half loops

— early return from procedure
— exceptions

— in many years of programming, | can't
remember using one for any other purpose

» except maybe complicated conditions that can
be separated into a single if-then-else because
of the need for short-circuiting

Recursion

* Recursion
— equally powerful to iteration
— mechanical transformations back and forth
— often more intuitive (sometimes less)

— naive implementation less efficient

* no special syntax required
« fundamental to functional languages like Scheme

Recursion

* Talil recursion
— No computation follows recursive call

/* assume a, b > 0 */
int gcd (1nt a, int b) {
if (a == b) return a;
else 1f (a > b) return gcd (a - b, Db);

else return gcd (a, b - a);

Chapter 8 :: Subroutines
and Control Abstraction

Programming Language Pragmatics

Michael L. Scott

The MIPS Architecture
ISA at a Glance

* Reduced Instruction Set Computer
(RISC)

« 32 general purpose 32-bit registers

» Load-store architecture: Operands in
registers

* Byte Addressable
« 32-bit address space

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

48

The MIPS Architecture

32 Register Set (32-bit registers)

Register # | Reg Name Function
r0 r0 Zero constant

rd-r al0-a3 Function arguments

rl at Reserved for Operating Systems
r30 fp Frame pointer

r28 gp Global memory pointer
r26-r27 kO-k1 Reserved for OS Kernel
r31 ra Function return address
rle-r23 sO0-s7 Callee saved registers
r29 sSp Stack pointer

r8-rlb5 t0-t7 Temporary varliables
r24-r25 £t8-t9 Temporary varliables
r2-r3 v0-v1l Function return values
Fall 2006 ICOM 4036 Programming

Laguages Lecture 4

The MIPS Architecture
Main Instruction Formats

Simple and uniform 32-bit 3-operand instruction formats

—R Format: Arithmetic/Logic operations on registers

opcode rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

—I Format: Branches, loads and stores

opcode rs rt Address/Immediate
6 bits 5 bits 5 bits 16 bits

—J Format: Jump Instruction

Fall 2006

opcode
6 bits

rs
S bits

rt
5 bits

Address/Immediate
16 bits

ICOM 4036 Programming
Laguages Lecture 4

50

MIPS Data Paths

PCWriteCond CauseWrite
ECWrite _EPCWrite
— lorD]Outputs PCSource
.
MemRead ALUOp
= MemWrite Control LR
k=) ALUSrcA
D MemtoReg
OQ o RegWrite
o IRWrite [5_%] RegDst
a 0
> 8 Jump im
o Instruction [25-0] : 2\6 Shift 2\ e address [31-0] :
\ W B3 2
Instruction 0O 00 00 00 3
=N [31-26] _L P_IC 7
PC 0 [31-28]
M Instruction Read
u = Address [256-21) register 1 ’—I
x
1 Memory Instruction Read dReatlj A
[20-16] p. register 2 data |
Membets | BN " Registers ALUOUt
Instruction L4 Write ad B l
Writ (15-011 ¥ |nstruction register gata 2
rite I
~ > jata Instruction [15-11] Write
register data ,
Instruction 0 0
[15-0] M
u Cause
x
- y 1 B
data 16
— \ Sign
- V7 lextend
Instruction [5-0]

FIGURE 5.48 The multicycle datapath with the addition needed to implement exceptions. The specific additions include the Cause and EPC regis-

ters, a multiplexor to control the value sent to the Cause register, an expansion of the multiplexor controlling the value written into the PC, and control lines
for the added multiplexor and registers.

Fall 2006 ICOM 4036 Programming 51
Laguages Lecture 4

Mips Packaging

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

52

The MIPS Architecture

Examples of Native Instruction Set

Instruction Instruction Function
Group
Arithmetic/ add S$sl,$s2,$s3 Ssl = $s2 + $s3
Logic
addi $sl1,S$s2,K Ssl = $s2 + K
Load/Store lw $s1,K($Ss2) Ss1l = MEM[S$Ss2+K]

sw $s1,K($Ss2)

MEM[S$Ss2+K] = $sl

Jumps and

beqg $s1,5$s2,K

if ($s1=$s2) goto PC + 4 + K

Conditional
Branches slt $sl1,S$s2,$s3 if ($s2<S$s3) $sl=1 else $s1=0
j K goto K
Procedures jal K Sra = PC + 4; goto K
jr Sra goto Sra
Fall 2006 ICOM 4036 Programming 53

Laguages Lecture 4

The SPIM Assembler

Examples of Pseudo-Instruction Set

Instruction Group Syntax Translates to:
Arithmetic/ neg $sl, $s2 sub S$s1, S$r0, S$s2
Logic not $sl, $s2 nor $17, $18, $0
Load/Store 1i $s1, K ori $sl1, $0, K
la $s1, K lui $at, 152
ori $sl, Sat, -27008
move $sl, $s2
Jumps and bgt $s1, $s2, K slt $at, sl, Ss2
Conditional bne S$at, $0, K
Branches sge $sl, $s2, $s3 bne $s3, $s2, foo
ori $sl1l, $0, 1
beqg $0, $0, bar
foo: slt $sl1, $s3, $s2
bar:

Pseudo Instructions: translated to native instructions by Assembler

FI‘
am ZzUuU9U

TNOOUUIVI "TUJUVU 1 IUSICAIIIIIIIIIH

Laguages Lecture 4

J

The SPIM Assembler

Examples of Assembler Directives

Group Directive Function
Memory .data <addr> Data Segment starting at
Segmentation

.text <addr> Text (program) Segment
.stack <addr> Stack Segment
.ktext <addr> Kernel Text Segment
.kdata <addr> Kernel Data Segment
Data Allocation x: .word <value> |Allocates 32-bit variable
x: .byte <value> | Allocates 8-bit variable
x: .ascii “hello” [Allocates 8-bit cell array
Other .globl x x 1s external symbol

Assembler Directives: Provide assembler additional info to generate machine code

Fall 2006 ICOM 4036 Programming 55
Laguages Lecture 4

Handy MIPS ISA References

Fall 2006

Appendix A: Patterson & Hennessy
SPIM ISA Summary on class website

Patterson & Hennessy Back Cover

ICOM 4036 Programming
Laguages Lecture 4

56

Computing Integer Division

Iterative C++ Version

MIPS/SPIM Version

inta=12;
intb = 4;
int result = 0;
main () {
while (a >=b) {
a=a-b;
result ++;
¥

b
] CH+

MIPS
Assembly Language

Fall 2006

res:

main:

while:

endwhile:

sw

sw

sw

12
4
0

main

$s0, x

$s1, 0($s0)

$s2, 4($s0)

$s3, 8($s0)

$s2, $s1, endwhile
$s1, $s1, $s2

$s3, $s3, 1

while

$s0, x

$s1, 0($s0)
$s2, 4($s0)
$s3, 8($s0)

Use HLL program as a comment
#intx=12;
#inty =4;

#intres =0;

Allocate registers for globals
xin $s1

yin $s2

resin $s3

while (x >=y) {

x=x-y;

res ++;

#}

Update variables in memory

ICOM 4036 Programming

Laguages Lecture 4

Y

Computing Integer Division

Iterative C++ Version

inta=12;
intb =4;
int result = 0;
main () {
while (a >=b) {
a=a-b;
result ++;
}
1

MIPS/SPIM Version
Input/Output in SPIM

prinl C++ At = %d
}

MIPS
Assembly Language

Fall 2006

res:
pf1:

main:

while:

endwhile:

.data
.word
.word

.word
.asciiz

.globl

text

la

li
syscall
move
li
syscall

la
sw
sw

SW

12
4

"Result="

main

$s0, x

$s1, 0($s0)
$s2, 4($s0)
$s3, 8($s0)

$s2, $s1, endwhile

$s1,9$s1,$s2 # x=x-y;

$s3, $s3, 1

while

$a0, pf1
$v0, 4

$a0, $s3
$vO0, 1

$s0, x

$s1, 0($s0)
$s2, 4($s0)
$s3, 8($s0)

Use HLL program as a comment
#intx=12;
#inty=4;

#intres =0;

Allocate registers for globals
xin $s1

yin $s2

resin $s3

while (x >=y) {

res ++;

#}

printf("Result = %d \n");
l/system call to print_str

//system call to print_int

Update variables in memory

Laguages Lecture 4

I

SPIM Assembler Abstractions

Symbolic Labels

— Instruction addresses and memory
locations

Assembler Directives
— Memory allocation
— Memory segments

Pseudo-Instructions

— Extend native instruction set without
complicating arquitecture

Macros

Fall 2006 ICOM 4036 Programming
Laguages Lecture 4

59

Implementing Procedures

« Why procedures?
— Abstraction
— Modularity
— Code re-use

* |nitial Goal

— Write segments of assembly code that can be re-used, or
“called” from different points in the main program.

— KISS: Keep It Simple Stupid:

* no parameters, no recursion, no locals, no return values

Procedure Linkage
Approach |

 Problem

— procedure must determine where to return after servicing the
call

« Solution: Architecture Support

— Add a jump instruction that saves the return address in some
place known to callee
« MIPS: jal instruction saves return address in register $ra
— Add an instruction that can jump to return address

« MIPS: jrinstruction jumps to the address contained in its
argument register

Computing Integer Division (Procedure Version)

Iterative C++ Version

int a = 0;

int b = 0;

int res = 0; | %

main () { ges:
a = 12; pfl:

pf2:

b =5;
res = O; main:
div () ;

printf (“Reg
}
void div (void
while (a >3
a = a - [l
res ++;

/C;

MIPS

.data

.word 0

.word 0

.word 0

.asciiz "Result = "
.asciiz "Remainder = "
.globl main
.text

la $s0, x
11 $sl, 12
sw $sl, 0($s0)
la $s0, vy
11 $s2,

sw $s2,

la $s0,

1i $s3,

SW 553

jal div

+r vo:, O($SO)
la $a0, pfl
1i Sv0, 4
syscall

move $a0, $s3
1i Sv0o, 1
syscall

la $a0, pf2
1i Sv0, 4
syscall

move $a0, $sl
1i Sv0o, 1
syscall

jr Sra

int main () {

umes registers sx unused

Function
Call

div();

printf ("Result = %d \n");
//system call to print str
//system call to print int
printf ("Remainder = %d \n");

//system call to print str

//system call to print int

return // TO Operating System

Assembly Languagc

Computing Integer Division (Procedure Version)

Iterative C++ Version

int a = 0;
int b = 0
int res
main () {
a = 12;
b = 5;
res = 0y
div () ;
printf (YRes =
}
volid div (void) {
while (a >= Db)
a =a - b;
res ++;

.
’

0;

°
cle

C++

MIPS
Assembly Language

div function

PROBLEM: Must save args and registers before using them

div:
la $s0, x
1w $sl, 0($s0)
la $s0, vy
1w $s2, 0($s0)
la $s0, res
1w $s3, 0($s0)
while: bgt $s2,
sub $s1, $sl1, $s2
addi $s3, $s3, 1
3 while
ewhile:
la $s0, x
SW $s1,
la $s0, vy
SwW $s2,
la $s0,
[<EW: QQQ'
enddiv: jr Sra

$sl, ewhile

void d(void) {

// Allocate registers for globals
// x in $sl

// y in $s2

// res in $s3

while (x <= y) {
.& —

= =

Function
Return

riables in memory

Pending Problems With
Linkage Approach |

Registers shared by all procedures
— procedures may overwrite each others registers
— Solution?

Procedures should be able to call other procedures
— Procedures overwrite return address register

— Solution?

Lack of parameters forces access to globals

— callee must know where parameters are stored

— Solution?

Need a convention for returning function values
— Caller must know where return value is?

— Solution?

Recursion requires multiple copies of local data
— Solution?

Recursion Basics

int fact(int n) {
if (n == 0) {
return 1;

else

return (fact(n-1) * n);

Y fact (2)
ac
n =3
‘\ _______
y
3 ¥ 2 =6 N\
n = 2
] fact (1)
2 % 1 = 2) x
1 1 =1 """ n =
4
1

Why Stacks?

Pending Problems With
Linkage Approach |

Registers shared by all procedures
— procedures may overwrite each others registers
— procedures must save/restore registers in stack

Procedures should be able to call other procedures
— Procedures overwrite return address register

— save multiple return addresses in stack

Lack of parameters forces access to globals

— callee must know where parameters are stored

— pass parameters in registers and/or stack

Need a convention for returning function values
— Caller must know where return value is?

— return values in registers

Recursion requires multiple copies of local data
— store multiple procedure activation records How many?

The MIPS Architecture
Memory Model

TAFFAFAf,,,

10000000,.,

400000,

Fall 2006

Dynamic data

Static data

Reserved

Stack segment

Data segment

Text segment

ICOM 4036 Programming
Laguages Lecture 4

32-bit
byte addressable
address space

Review Of Stack Layout

 Allocation strategies

— Static
« Code
* Globals
* Own variables

 Explicit constants (including strings, sets, other
aggregates)

« Small scalars may be stored in the instructions
themselves

Review Of Stack Layout

 Allocation strategies (2)
— Stack

e parameters

* local variables

« temporaries

« bookkeeping information

— Heap

« dynamic allocation

Solution: Use Stacks of

Procedure Frames

» Stack frame contains:
— Saved arguments
— Saved registers
— Return address
— Local variables

OS

main
stack frame

div
stack frame

U

stack growth

Anatomy of a Stack Frame

caller’s stack frame
function arguments
frame '
Pointer return address
$fp in MIPS
saved registers
local variables of static size
stack
Pointer i
in MIP
SDLnIALIES work area

Contract: Every function must leave the stack the way 1t found it

Review Of Stack Layout

A

.
(\7
|

Static

Jynamic i
Dynamic Links

— Links

f\(\f\
|

Figure 8.1: Example of subroutine nesting, taken from Figure 3.5. Within B, C.
and D, all five routines are visible. Within A and E. routines A. B. and E are visible, but
C and D are not. Given the calling sequence A, E, B, D. C, in that order, frames will be
allocated on the stack as shown at right, with the indicated static and dynamic links.

Review Of Stack Layout

 Contents of a stack frame

— bookkeeping
* return PC (dynamic link)

» saved registers

* line number

« saved display entries

« static link
— arguments and returns
— local variables

— temporaries

Calling Sequences

* Maintenance of stack is responsibility of
calling sequence and subroutine prolog
and epilog — discussed in Chapter 3

— space Is saved by putting as much in the
prolog and epilog as possible

— time may be saved by putting stuff in the
caller instead, where more information may be
known

* e.g., there may be fewer registers IN USE at the
point of call than are used SOMEWHERE in the
callee

Calling Sequences

 Common strategy is to divide registers
Into caller-saves and callee-saves sets

— caller uses the "callee-saves" registers first
— "caller-saves" registers if necessary

* Local variables and arguments are
assigned fixed OFFSETS from the stack
pointer or frame pointer at compile time

— some storage layouts use a separate
arguments pointer

— the VAX architecture encouraged this

Calling Sequences

| |
«—— sp

Arguments
to called

N\ routines

Temporaries

Direction of stack growth L(‘x'nl
(lower addresses) variables

Saved regs.,

static link

Saved fp
«—— fp

Return address

(Arguments
from caller)

Figure 8.2: A typical stack frame. Though we draw it growing upward on the page, the
stack actually grows downward toward lower addresses on most machines. Arguments are
accessed at positive offsets from the fp. Local variables and temporaries are accessed at
negative offsets from the fp. Arguments to be passed to called routines are assembled at
the top of the frame, using positive offsets from the sp.

Calling Sequences (C on MIPS)

e Caller

— saves into the temporaries and locals area
any caller-saves registers whose values will
be needed after the call

— puts up to 4 small arguments into registers
$4-$7 (a0-a3)
* it depends on the types of the parameters and the
order in which they appear in the argument list

— puts the rest of the arguments into the arg
build area at the top of the stack frame

— does jal, which puts return address into
register ra and branches
* note that jal, like all branches, has a delay slot

Calling Sequences (C on MIPS)

* In prolog, Callee
— subtracts framesize from sp

— saves callee-saves registers used anywhere
inside callee

— copies sp to fp
* In epilog, Callee
— puts return value into registers (mem if large)
— copies fp into sp (see below for rationale)
— restores saved registers using sp as base
— adds to sp to deallocate frame
— does jra

Calling Sequences (C on MIPS)

o After call, Caller

— moves return value from register to wherever
it's needed (if appropriate)

— restores caller-saves registers lazily over time,
as their values are needed

« All arguments have space Iin the stack,
whether passed in registers or not

* The subroutine just begins with some of
the arguments already cached in reqgisters,
and 'stale’ values in memory

Calling Sequences (C on MIPS)

» This is a normal state of affairs;
optimizing compilers keep things in
registers whenever possible, flushing
to memory only when they run out of
registers, or when code may attempt
to access the data through a pointer
or from an inner scope

Calling Sequences (C on MIPS)

* Many parts of the calling sequence,
prologue, and/or epilogue can be omitted
IN common cases
— particularly LEAF routines (those that don't

call other routines)

* leaving things out saves time

» simple leaf routines don't use the stack - don't
even use memory — and are exceptionally fast

Example: Function Linkage
using Stack Frames

int x
int y
int res
main ()

}

int div(int a,int b) { N

0;
0;
= 0;
{

x = 12;

y = 9;

res = div(x,V);

printf (Y“Res = %d”,res);

int res = 0;
if (a >= b) {
res = div(a-b,b) + 1;
}
else {
res = 0;
}

return res;

* Add return values
*Add parameters

*Add recursion

* Add local variables

Example: Function Linkage using Stack Frames

div:

if:

else:
endif:

enddiv:

sub
SW
SW
SW
SW
SW
SW
1i
SW

1w
1w
1w

bgt
sub
move
jal
addi

1i

SW
SW
SW
move

1w
1w
1w
1w
1w
1w
addu
jr

$sp,
$ao0,
sal,
Sra,
$s1,
$s2,
$s3,
$s3,
$s3,

$s1,
$s2,
$s3,

$s2,
$ao,
sal,
div
$s3,
endif
$s3,

$s1,
$s2,
$s3,
$vo,

$ao,
sal,
Sra,
$s1,
$s2,
$s3,
$sp,
Sra

Ssp, 28
24 (Ssp)
20 ($sp)
16 ($sp)
12 ($sp)
8 (Ssp)

Alloc space for 28 byte stack frame
Save argument registers

a in $a0

Save other registers as needed

Save callee saved registers ($sx)

P

4 ($sp) # No need to save $s4, since not used

0

0($sp) # int res =

24 ($sp)
20 (Ssp)
0($sp) #

$Ssl, else
Ssl, $s2
$s2

$vo, 1 #
0]

24 ($sp)
20 ($sp)
0($sp) #
$s3

24 ($sp
20 (Ssp
16 (Ssp
12 ($sp
8 (Ssp)
4 ($sp)
$sp, 28

)
)
)
)

a in $si1

0;
Allocate registers for locals
#
b in $s2

res in $s3

1f (a >= b) {

#
#
res = div(a-b, b) + 1;
1
else { res = 0; }
deallocate a from S$sl

deallocate b from $s2
deallocate res from $s3
return res

Restore saved registers

a in $a0

Save other registers as needed
Save callee saved registers ($sx)

s

=+

No need to save $s4, since not used
pop stack frame
return;

=+

MIPS: Procedure Linkage

Summary

 First 4 arguments passed in $a0-$a3
* Other arguments passed on the stack
« Return address passed in $ra

« Return value(s) returned in $v0-$v1

* SX registers saved by callee

* TX registers saved by caller

Parameter Passing

« Parameter passing mechanisms have
three basic implementations

—value
— value/result (copying)
—reference (aliasing)
—closure/name
* Many languages (e.g., Pascal)
provide value and reference directly

Parameter Passing

« C/C++: functions
— parameters passed by value (C)

— parameters passed by reference can be
simulated with pointers (C)

volid proc (int* x,int vy) {*x = *x+y } ..
proc (&a,b) ;

— or directly passed by reference (C++)
vold proc(inté& x, int y) {x = x + y }

proc(a,b);

Parameter Passing

* Ada goes for semantics: who can do what
— In: callee reads only

— QOut. callee writes and can then read (formal
not initialized); actual modified

— In out: callee reads and writes: actual modified

« Ada in/out is always implemented as
— value/result for scalars, and either
— value/result or reference for structured objects

Parameter Passing

 In a language with a reference model of
variables (Lisp, Clu), pass by reference
(sharing) is the obvious approach

* It's also the only option in Fortran

* If you pass a constant, the compiler creates a
temporary location to hold it

* If you modify the temporary, who cares?

» Call-by name is an old Algol technique

* Think of it as call by textual substitution
(procedure with all name parameters works

like macro) - what you pass are hidden
procedures called THUNKS

Parameter Passing

implementation permissible change to

mechanism operations actual? alias?
value value read, write 1o 1o

in, const value or reference read only no maybe

out (Ada) value or reference write only ves maybe
value/result value read, write ves no
var, ref reference read, write yes yes
sharing value or reference read, write yves yes

in out (Ada) value or reference read, write ves maybe
name (Algol 60) closure (thunk) read, write yves yes

Figure 8.3: Parameter passing modes. Column 1 indicates common names for modes.
Column 2 indicates implementation via passing of values. references. or closures. Column
3 indicates whether the callee can read or write the formal parameter. Column 4 indicates
whether changes to the formal parameter affect the actual parameter. Column 5 indicates
whether changes to the formal or actual parameter, during the execution of the subroutine,
may be visible through the other.

Generic Subroutines and
Modules

* Generic modules or classes are
particularly valuable for creating
containers: data abstractions that hold a
collection of objects

* Generic subroutines (methods) are
needed in generic modules (classes), and
may also be useful in their own right

Exception Handling Principles

What is an Exception?

« Something that should not happen under
normal or typical circunstances

 Programmer knows that it can happen

* Programmer cannot predict when will it
nappen

* Program MUST be prepared to handle it

Exception Handling Principles

Some sources of exceptions:

* Wrong user behavior (intentional or not)
* Non-existent input files

« Badly formatted input files

* Overflow conditions

Are programmer mistakes exceptions?

Exception Handling Principles

Approaches to exception handling:

« Without language support
— Set global variable
— Error condition reference parameters
— Error return values
— Error handling subroutines

« With language support
— Exception classes (C++, Java)

Exception Handling Principles

Challenge of exception handling:

GUI View Error handled here
Workflow Controller
Data Processing Model Error detected here

Java: unhandled exceptions are automatically
propagated up the procedure call chain

Exception Handling Principles

Advantages of language supported
exception handling:

« Keep exceptional and normal code
separate

 Uniform mechanism

* Automatically propagate exception to
place where it can best be handled

Exception Handling

* What is an exception?

—a hardware-detected run-time error or
unusual condition detected by software

 Examples
—arithmetic overflow
—end-of-file on input
—wrong type for input data

—user-defined conditions, not necessarily
errors

Catching Exceptions

« Example:

try
{
String filename = . . .;
FileReader reader = new FileReader (filename);
Scanner 1n = new Scanner (reader); String 1nput =
in.next ()
int value = Integer.parselnt (input);

}

catch (IOException exception)

{

exception.printStackTrace () ;

}

catch (NumberFormatException exception)

{

System.out.println ("Input was not a number");

} Big Java by Cay Horstmann
Copyright © 2008 by John Wiley &
Sons. All rights reserved.

Exception Handling

* What is an exception handler?
— code executed when exception occurs
— may need a different handler for each type of
exception
* Why design in exception handling
facilities?
— allow user to explicitly handle errors in a
uniform manner

— allow user to handle errors without having to
check these conditions

— explicitly in the program everywhere they
might occur

Coroutines

 Coroutines are execution contexts that
exist concurrently, but that execute one at
a time, and that transfer control to each
other explicitly, by name

* Coroutines can be used to implement
— iterators (Section 6.5.3)
— threads (to be discussed in Chapter 12)

* Because they are concurrent (i.e.,

simultaneously started but not completed),
coroutines cannot share a single stack

Coroutines

A
P K
S
R . y
C ~l | =
\ B
e L
B
Q S
S
Q
M c
R

Figure 8.5: A cactus stack. Each branch to the side represents the creation of a coroutine
(A. B, C, and D). The static nesting of blocks is shown at right. Static links are shown
with arrows. Dynamic links are indicated simply by vertical arrangement: each routine has
called the one above it.

