Universidad de Puerto Rico – Mayaguez Department of Electrical and Computer Engineering

INEL 4206 – Microprocessors

Exam III – Topics and Practice Problems

Topics

- ?? Review all previous material up to Exam I
- ?? Procedures
 - o Parameter Passing
 - o Stack frames
 - Recursive procedures (Problem Set 3)
- ?? Data Representation
 - Signed and unsigned integers
 - Floating point numbers
 - Single precision
 - M Double precision
 - Mc Converting between decimal scientific notation and IEEE 574
 - o Arrays
 - Me One dimensional
 - # Two dimensional
 - Multi-word objects
- ?? Easy I simulator implementation

NOTE: The material on the Intel Pentium processor will be tested on the final exam.

Practice Problems

- 1. Write a recursive procedure to compute and return the greatest common divisor (GCD) of 2 integer arguments. First write the procedure in a HLL and then compile the HLL code to MIPS assembly. The GCD can be defined recurrently as:
 - a. GCD(a, b) = b if b divides a
 - b. GCD(a, b) = GCD(b,r) otherwise, where r = a MOD b

- 2. Write a procedure called precision() with no arguments. The procedure must return the smallest floating point number that can be added to 1 such that the result of the sum is different from 1.
- 3. Write a procedure sin(x) that takes one float argument representing an angle in radians. The procedure should return the approximated floating point value of sin(x) by computing the sum of a Taylor series. First write the procedure in a HLL and the write in MIPS assembly language.
- 4. Write procedures that take a one dimensional array of integers a and its length and perform the following operations:
 - a. Multiply the array by a scalar
 - b. Compute the sum of the elements of the array
 - c. Sort the array increasingly
- 5. Repeat problem 3 this time using arrays of double precision floating point numbers.
- 6. Write a procedure mmult(a,b,c,n) that takes as arguments three square matrices a, b and c with common length n. The procedure should compute the matrix product of a and b a store the result on matrix c. First write a HLL version of mmult and then hand-compile it to MIPS assemby language.
- 7. All the problems on Chapters 3 and 4 of Patterson and Hennessy Computer Organization and Design.

REMINDER

We will have exam 3 next Monday April 22 from 6-8 PM in S-113.