
University of Puerto Rico – Mayagüez
School of Engineering

Department of Electrical and Computer Engineering

INEL 4206 – Microprocessors – Spring 2002

Problem Set 4 – Due Monday April 15, 2002 (In class)

Important: Start to work on this problem set early. Do not leave this to the last
minute or you will not be able to complete the work.

In this problem set you will implement a simulator for a modified version of the Easy I
architecture discussed in class. The simulator will run on SPIM. It must be able to
interpret a sequence of Easy I instructions stored in memory and should accomplish the
same functionality as if the Easy I program was run natively on an Easy I processor.

You should structure your simulator using procedures. In general you should implement
one procedure to simulate each Easy I instruction. Also you should add procedures to
fetch and decode instructions as well as to fetch the operands. You may add more
procedures as you see fit to achieve a well structured design.

You must remember that the Easy I is a byte addressable accumulator architecture with
16-bit instructions and 16-bit word size. Other important details about the Easy I
architecture are provided in the following pages.

Description of the main procedures

Procedure name Contract

reset Initializes Easy I registers

fetch Fills instruction register with next instruction

decode Decides which execute procedure to call based on the
opcode

fetchop Fills data buffer register with operand

Only applies for indirect mode instructions

comp One-Complements the accumulator

shr Shift right accumulator one bit

brn Branch if accumulator is negative. Target address refers
to Easy I data segment

jump Unconditional jump to target address within Easy I text
segment

jal Same as jump, but saves PC+2 in accumulator. NEW
EASY I INSTRUCTION.

jac Unconditional jump to address contained in accumulator.
NEW EASY I INSTRUCTION.

store Stores accumulator in memory data segment

load Load accumulator from memory data segment

and Bitwise AND accumulator with operand. Put result in
accumulator.

add Add accumulator with operand. Put result in
accumulator.

loadsp Move stack pointer to accumulator. NEW EASY I
INSTRUCTION.

storesp Move accumulator to stack pointer. NEW EASY I
INSTRUCTION.

stop Stops the simulation.

run Performs Easy I simulation. Should call reset and then
loop through each Easy I instruction. Should finally call
stop and then return.

Easy I Memory Model

To keep the project as simple as possible you may assume that the Easy I program,
data segments and stack segment will be stored at fixed locations within the MIPS data
segment as follows:

Easy I segment MIPS data segment address - All 64K long

Text segment 0x10000000 - 0x1000FFFF

Data Segment 0x10010000 - 0x1001FFFF

Stack segment 0x10020000 - 0x1002FFFF

You may also assume that the Easy I will run on a 16-bit address space. That is, it may
access memory locations 0 through 65535. Therefore, address 0 of the Easy I data
segment would map to the first memory location inside the MIPS data segment where
the Easy I data segment resides.

Register Allocation

You must use the following register allocation in order to keep all projects as uniform as
possible. This will facilitate discussion among students as well as grading. Notice that
the modified Easy I architecture has a stack pointer (SP). Also notice that the simulator
will need to simulate both the programmer-visible registers, like the AC, as well as the
hidden ones like the PC. The instruction register holds the instruction currently being
executed (i.e. simulated).

Easy I Register MIPS register

Instruction register $s0

Program counter $s1

Accumulator $s3

Address Buffer Register $s4

Data Buffer Register $s5

Stack pointer $s6

Easy I Instruction Format

The format of an easy one instruction will be identical to the one discussed in class.

Easy I Instruction Set

The following table describes the full set of instructions that your simulator should be
able to execute.

Name Opcode Action

I= 0

Action

I = 1

Comp 00 000 AC ? not AC Same as I = 0

shR 00 001 AC ? AC / 2 Same as I = 0

BrN 00 010 If (AC < 0): PC ? X If (AC < 0): PC ? MEM[X]

Jump 00 011 PC ? X PC ? MEM[X]

Store 00 100 MEM[X] ? AC MEM[MEM[X]] ? AC

Load 00 101 AC ? MEM[X] AC ? MEM[MEM[X]]

And 00 110 AC ? AC and X AC ? AC and MEM[X]

Add 00 111 AC ? AC + X AC ? AC + MEM[X]

Jal 01 000 AC ? PC+2; PC ? X AC ? PC+2; PC ?
MEM[X]

Jac 01 001 PC ? AC PC ? MEM[AC]

loadSp 01 010 AC ? SP AC ? MEM[SP]

storeSp 01 011 SP ? AC MEM[SP] ? AC

 I opcode X
0 9 10 14 15

I = Indirect bit

Testing your program and Grading

A set of test programs will be provided to you within the next few days. The tests will
consist of sample program segments in Easy I machine code that your simulator should
be able to execute to completion. The state of the Easy I processor at the end of each
segment should emulate that of a real Easy I processor running the same set of
inctructions.

Your program must pass some minimal tests in order to qualify for grading.

Your program will be graded based on correctness, quality and efficiency as
described in the “prontuario” of the course.

