
University of Puerto Rico – Mayagüez Campus
School of Engineering

INEL 4206 – Microprocessors

Problem Set 2
Due: Tuesday, March 18, 2003

Using the instruction set discussed in class for the Easy I processor, you will provide
Assembly programs as solutions to the various parts of this problem set. You are given
an Assembler and an Simulator with the Problem Set package file, read the instructions
on how to use these programs in the following pages. You are also given a “template
file” with some code, you must edit after the line that says “#Start your code here”, don’t
edit this line or any line above, except in the space provided for name, student #, and
Linux lab account number.

A) (35 points) Write an Easy I Assembly program that determines the remainder for the
division of two numbers. The file provided (ps2a.asm) has the locations for the dividend,
divisor and remainder. Your result must be in the memory space assigned in the code for
the remainder (memory location 504).

Variable Location Initial Value
Dividend 500 9
Divisor 502 4

Remainder 504 0

B) (35 points) Provide an Easy I Assembly program that determines the Fibonacci
Number Sequence for a specified Amount of terms. An example program in C++ is
provided to you in the problem set files, so basically what you have to do is translate the
HLL program (C++ program) into instructions from the EasyI Instruction Set (assembly
language). You are given the first part of assembly program which “allocates” space for
the array of integers where you will store your result. The Amount of terms is given in
the code (memory location 500). For convenience the index of the last element in the
array is also stored in memory, if you wish to use it in your program.

C) (30 points) Your are given a set of instructions encoded into Hexadecimal digits (4-
digits represent each instruction). Starting on memory location 600 the program creates
an array and after execution it contains a message using the ASCII code (you can find out

the code in decimal and hexadecimal notation at www.asciitable.com). The task for this
problem is to determine what the message is. The message is first put into memory
encoded and then decoded by the program and placed in the same location in memory.
You must execute the program either manually or by changing into machine code and
using the simulator, either way you must show your work and explain your steps,
describe method used for encoding/decoding the message, plus provide the message.
The file containing the hex-codes is called ps2-c.hex.

General information on how the simulator works

 Memory addresses start at 500 (in this case up to 699)
 500-599 Defined variables (local vars declared vars in HLL)
 600-699 Heap Memory (Dynamic Memory i.e. arrays)

If you use a immediate jump instruction (jumpi / brni) you may use labels and reference
them in the instruction, if you are using an indirect method (jump / brn) you must use the
line number of the instruction you want to jump to (starting with 1 not 0).

Comments are allowed in both the assembly and the machine code for this
assembler/simulator. Comments are preceded by the pound sign (#), anything after this
will be ignored. Comments can be made after an instruction, or on a line by themselves.

You are given two programs, one that is an assembler and one that is the EasyI simulator.
The assembler will take your assembly program and convert it to machine code (EasyI
machine code) and save the output on a file with a filename specified by you during
execution. The simulator will read the machine code file, and process the instructions, at
the end of the processing it will show you the status of the accumulator and any memory
location that has been used during the execution of the program. Both programs are
made in Java and are packaged in a jar file. To make it easier for you, two scripts have
been included in the files provided. You will use the scripts to execute the program. Here
are examples of how to run the assembler and the simulator.

./asm ps2a.a ? this will then ask me the output file name I want and convert
 ps2a.a to machine code

./sim ps2a.mc ? this will execute the instructions contained in the machine code file
 named ps2a.mc

Problem 2 Specific Details

? Array length is stored in memory location 500

? Base address of the array is stored in memory location 502

? Index of last element in array is stored in memory location 504

? Array starts at memory location 620, to maintain the idea of byte

addressable memory, each cell is accessed by 2*index + base address, so
the second cell (index 1) is at 622 not 621.

You should use the memory space from 506 to 599 for your local variables, since the
program will be tested with different number of terms, therefor the memory array will
vary from test to test. For example if you use memory location 620 for a local variable,
and one of the tests cases has an array that uses that memory location as a cell, your
program will not work correctly.

Valid instructions for the assembly language of the EasyI (make reference to class slides
for their functionality)

 add & addi
 and & andi
 comp
 shr
 jump & jumpi
 brn & brni
 load & loadi
 store & storei

A new end instruction was added for this problem set. This new instruction marks the
end of your program, please use it, even though your program should work the same
without it.

Make sure you have no blank (empty) lines between code lines or at the end of the file, as
they are not handled by the assembler/simulator.

Note: Remember that the 'i' at the end of the instructions is immediate and is not the same
as the I in the machine code which represents indirect instruction, in fact they are
opposites. Therefore,

 jump 0 would be ? 100011000000000
and,
 jumpi 0 would be ? 000011000000000

For the immediate versions of jump and branch, (jumpi and brni) labels can be used so
you don’t have to mess with line numbers. A label will mark the place where to jump to.

Example:

line 1: looplabel: #jump here
line 2: andi 0
line 3: jumpi looplabel

would be equivalent to:

line 1: #jump here
line 2: andi 0
line 3: jumpi 1

Files and Submission Instructions

File you receive: ps2pkg.tar.gz

This is a compressed file, which you have to decompress using the command,

tar –xzf ps2pkg.tar.gz

on the console of the Linux workstation. This will create a folder named ps2files and
inside you will find:

ps2.pdf ? This file (or future versions)
ps2.jar ? Actual java programs packaged inside here
asm ? Script to execute the assembler
sim ? Script to execute the simulator
ps2a.a ? Assembly program file template with variable location for problem A
ps2b.a ? Assembly program file with initial variables and array allocation

scheme (algorithm)
ps2c.hex ? File containing the hexadecimal code for the program in part C
submit ? Script that submits your answer (which should be named ps2.asm and
 ps2.mc)
ps2b.cc ? Fibonacci Sequence Program in C++

Files you submit:

ps2a.a ? The assembly file with program from problem A
ps2a.mc ? The machine code file with your program from problem A
ps2b.a ? The assembly file with program from problem B
ps2b.mc ? The machine code file with your program from problem B

Answer to problem C, will be handed-in (in paper) to the professor on the due date.

This files will be submitted using the submit script, by running the command “./submit”
inside the p2files folder. You must use the account provided for this class to submit the
files since they will be identified by the username (account name).

Grading Criteria

Criteria Weight(%)
Correctness 60%

Design 20%
Efficiency 10%

Style 10%

Remember the policy on late submission stated on the “Course Information Sheet” (a.k.a.
Prontuario)

References

The Fibonacci Numbers : http://math.holycross.edu/~davids/fibonacci/fibonacci.html

