
ICOM 4036 – Programming Languages

Programming Assignment 2

Circuit Analysis with Phasors

Due on Friday April 2nd and April 9th

Overall Problem Statement

As part of this programming assignment you will implement a library consisting of several
subprograms that can be used to analyze electrical circuits containing basic elements including
resistors, capacitors, inductors, voltage sources and current sources.

Circuit specification language

Before a circuit can be analyzed it must be encoded as a data structure amenable to
computational analysis. For this assignment this data structure will in essence be a matrix of
floating point numbers having one row for each circuit element. The columns will represent
various characteristics of the element. For instance, consider the following simple electrical
circuit of three (3) elements and two nodes.

This circuit should be encoded in matrix form as follows:

Element # Source Node # Target Node # Element Type Characteristic
1 1 2 1 (voltage source) 10 (V AC)
2 1 2 3 (capacitor) 10E-9 (F)
3 1 2 2 (resistor) 100E3 (Ω)

Node one (1) will always be assumed to be the voltage reference node (a.k.a ground). Nodes are
assumed to be numbered in sequence starting at node number 1 and continuing for as many
nodes as present in the circuit. Node numbers other than 1 have no particular meaning. Therefore
circuit nodes can be numbered in any order.

Circuit elements are also numbered beginning at element 1. Each element is assumed to have
two ports, a source port and a target port1. By convention the source port is always the one with
the smallest number and the one marked with the positive voltage reference (+). Element types
are also numeric and can be at least one of the following:

Element Type Element Type Code Characteristic Unit
AC voltage source 1 Volts
Resistor 2 Ohm
Capacitor 3 Farads
Inductor 4 Henry

You may add element types to this table if you wish your subroutines to be more general, but this
will no be required for full credit.

Your job is to compute the voltage phasor at each node of the circuit. To accomplish this task
you should first construct a system of linear equations using nodal analysis. The resulting
system should consist of one equation per node and each equation should be expressed in terms
of a linear combination of node voltage phasors. To solve the system you may use the code
developed in class for solving linear systems of equations. One caveat, remember that since we
are dealing with steady state sinusoidal analysis, your currents and voltages can be conveniently
represented as complex numbers. You may find Fortran’s built-in support for complex numbers
quite handy for this exercise.

Your code will consist of several subprograms including the ones shown in the following table:

Subprogram Name Description

MakLSE Constructs the linear system of equations (LSE) from the
matrix of components.

Solve Solves the linear system of equations.

Triang Triangulates a matrix representing a linear system of equations
on complex variables. Called by Solve.

BkSubs Performs back substitution to find the solution of the LSE
given a triangulated matrix. Called by Solve.

The parameters of the subprograms and their type specifications are part of your design. You
may also find it useful to create additional subprograms in order to improve the structure of your
code.

Academic Integrity

Note that several details of this project have been intentionally left unspecified in order to
provide students with plenty of space for creative design. The end goal is the same for everyone:
analyzing electrical circuits using phasors and nodal analysis. There are enough degrees of
freedom in order to make it unlikely that two students working independently will end up with

1 Supporting elements with more than one port is another opportunity for extra creativity.

the same design. All work in tis programming assignment is to be conducted by each student
individually. Remember to read the section of the prontuario that deals with academic integrity.

Compiling and Testing Your Code

You will carry out all your software development using the tools available at the Linux
Academic Computing Lab (Amadeus). You may work on your personal Linux-based PC, but
you must make sure that your code works with the software development tools available at
Amadeus as this is the infrastructure that the staff will use to grade your assignment.

Remember from the prontuario that your programming assignments will be graded according to
the following late penalty policy:

Days Late Percent
Deduction

1 day late 25%
2 days late 50%
3 days late 100%

Programming assignments will be graded for both correctness and quality according to the
following weights:

Criteria Weight (%)
Correctness 60%

Design 20%
Efficiency 10%

Style & Documentation 10%

Submitting Your Code

You will submit your solution in two installments. The first one is due April 2nd and should
include a complete skeleton of the library, although some subroutines may not be completed.
The idea is to have a chance to look at you design and make sure that you are not far off
schedule. The second installment is due April 9 and should include a fully working library
complete with a simple testing program demonstrating that the library works. In both
installments you should place all your subroutines into a single Fortran (.f) file and encode it
using gzip before submitting it with the submit program that will be available for this
programming assignment.

Extra Credit (up to 10 points towards any partial exam)

Implement a plotting subroutine that generates a matrix of characters representing the overlay of
the graphs corresponding to an array of phasors. The subroutine should take as arguments the
array of phasors to be plotted, the interval in the t (time) axis and the interval in the V/I axis.
The subroutine should select a different character symbol for each phasor so as to allow
visualization of the different curves on the same plot.

