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Language Specification and Translation
Topics

• Structure of a Compiler
• Lexical Specification and Scanning
• Syntactic Specification and Parsing
• Semantic Specification and Analysis
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Syntax versus Semantics

• Syntax - the form or structure of the 
expressions, statements, and program units

• Semantics - the meaning of the expressions,  
statements, and program units
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The Structure of a Compiler

1. Lexical Analysis
2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

The first 3, at least, can be understood by 
analogy to how humans comprehend 

English.
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A Prototypical Compiler
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Introduction

• Reasons to separate compiler in phases:
– Simplicity - less complex approaches can be used 

for lexical analysis; separating them simplifies the 
parser

– Efficiency - separation allows optimization of the 
lexical analyzer

– Portability - parts of the lexical analyzer may not 
be portable, but the parser always is portable
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Lexical Analysis

• First step: recognize words.
– Smallest unit above letters

This is a sentence.

• Note the
– Capital “T” (start of sentence symbol)
– Blank “ “ (word separator)
– Period “.” (end of sentence symbol)
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Lexical Analysis

• Lexical analysis is not trivial.  Consider:
ist his ase nte nce

• Plus, programming languages are typically 
more cryptic than English:

*p->f ++ = -.12345e-5
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Lexical Analysis

• Lexical analyzer divides program text into 
“words” or “tokens”

if x == y then z = 1; else z = 2;

• Units: 
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;
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Lexical Analysis

• A lexical analyzer is a pattern matcher for 
character strings

• A lexical analyzer is a “front-end” for the 
parser

• Identifies substrings of the source program 
that belong together - lexemes
– Lexemes match a character pattern, which is 

associated with a lexical category called a token
– sum is a lexeme; its token may be IDENT
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Lexical Analysis

• The lexical analyzer is usually a function that is called 
by the parser when it needs the next token

• Three approaches to building a lexical analyzer:
– Write a formal description of the tokens and use a software 

tool that constructs table-driven lexical analyzers given such 
a description

– Design a state diagram that describes the tokens and write a 
program that implements the state diagram

– Design a state diagram that describes the tokens and hand-
construct a table-driven implementation of the state diagram

• We only discuss approach 2

State diagram = Finite State Machine
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Lexical Analysis

• State diagram design:
– A naïve state diagram would have a transition 

from every state on every character in the source 
language - such a diagram would be very large!

• In many cases, transitions can be combined to 
simplify the state diagram
– When recognizing an identifier, all uppercase and 

lowercase letters are equivalent
• Use a character class that includes all letters

– When recognizing an integer literal, all digits are 
equivalent - use a digit class



Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-13

Lexical Analysis

• Reserved words and identifiers can be 
recognized together (rather than having a part 
of the diagram for each reserved word)
– Use a table lookup to determine whether a possible 

identifier is in fact a reserved word
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Lexical Analysis

• Convenient utility subprograms:
– getChar - gets the next character of input, puts it 

in nextChar, determines its class and puts the 
class in charClass

– addChar - puts the character from nextChar
into the place the lexeme is being accumulated, 
lexeme

– lookup - determines whether the string in lexeme
is a reserved word (returns a code)
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State Diagram
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Lexical Analysis

• Implementation (assume initialization):
int lex() {
getChar();
switch (charClass) {
case LETTER:
addChar();
getChar();
while (charClass == LETTER || charClass == DIGIT)
{
addChar();
getChar();

}
return lookup(lexeme);
break;

…



Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-17

Lexical Analysis

…
case DIGIT: 

addChar();
getChar();
while (charClass == DIGIT) {

addChar();
getChar();

}
return INT_LIT;
break;

}  /* End of switch */
}  /* End of function lex */
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Parsing

• Once words are understood, the next step is to 
understand sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree
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Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence
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Parsing Programs

• Parsing program expressions is the same
• Consider:

If x == y then z = 1; else z = 2;
• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt
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Describing Syntax

• A sentence is a string of characters over some 
alphabet

• A language is a set of sentences
• A lexeme is the lowest level syntactic unit of a 

language (e.g., *, sum, begin)
• A token is a category of lexemes (e.g., 

identifier)
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Describing Syntax

• Formal approaches to describing syntax:
– Recognizers - used in compilers (we will look at in 

Chapter 4)
– Generators – generate the sentences of a language 

(what we'll study in this chapter)
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Formal Methods of 
Describing Syntax

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s
– Language generators, meant to describe the syntax of 

natural languages
– Define a class of languages called context-free 

languages
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Formal Methods of 
Describing Syntax

• Backus-Naur Form (1959)
– Invented by John Backus to describe Algol 58
– BNF is equivalent to context-free grammars 
– A metalanguage is a language used to describe another 

language.
– In BNF, abstractions are used to represent classes of 

syntactic structures--they act like  syntactic  variables 
(also called nonterminal symbols)
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Backus-Naur Form (1959)

<while_stmt> → while ( <logic_expr> ) <stmt>

• This is a rule; it describes the structure of a  
while statement
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Formal Methods of 
Describing Syntax

• A rule has a left-hand side (LHS) and a right-hand 
side (RHS), and consists of terminal and  
nonterminal symbols

• A grammar is a finite nonempty set of rules
• An abstraction (or nonterminal symbol) can have 

more than one RHS
<stmt> → <single_stmt> 

| begin <stmt_list> end
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Formal Methods of 
Describing Syntax

• Syntactic lists are described using recursion
<ident_list> → ident

| ident, <ident_list>
• A derivation is a repeated application of rules, 

starting with the start symbol and ending with a 
sentence (all terminal symbols)
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Formal Methods of 
Describing Syntax

• An example grammar:
<program> → <stmts>
<stmts> → <stmt> | <stmt> ; <stmts>
<stmt> → <var> = <expr>
<var> → a | b | c | d

<expr> → <term> + <term> | <term> - <term>
<term> → <var> | const
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Formal Methods of 
Describing Syntax

• An example derivation:
<program> => <stmts> => <stmt> 

=> <var> = <expr> => a = <expr> 
=> a = <term> + <term>
=> a = <var> + <term> 
=> a = b + <term>
=> a = b + const
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Derivation

• Every string of symbols in the derivation is a 
sentential form

• A sentence is a sentential form that has only 
terminal symbols

• A leftmost derivation is one in which the 
leftmost nonterminal in each sentential form is 
the one that is expanded

• A derivation may be neither leftmost nor 
rightmost
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Parse Tree

• A hierarchical representation of a derivation

<program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>
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Formal Methods of 
Describing Syntax

• A grammar is ambiguous iff it generates a 
sentential form that has two or more distinct parse 
trees
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An Ambiguous 
Expression Grammar

<expr> → <expr> <op> <expr>  |  const
<op> → /  |  -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>
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An Unambiguous
Expression Grammar
• If we use the parse tree to indicate precedence 

levels of the operators, we cannot have 
ambiguity

<expr> → <expr> - <term>  |  <term>
<term> → <term> / const  |  const

<expr>

<expr> <term>

<term> <term>

const const

const/

-
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Formal Methods of 
Describing Syntax

Derivation:
<expr> => <expr> - <term> => <term> - <term>

=> const - <term> 
=> const - <term> / const
=> const - const / const
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Formal Methods of Describing 
Syntax
• Operator associativity can also be indicated by a 

grammar
<expr> -> <expr> + <expr>  |  const  (ambiguous)
<expr> -> <expr> + const  |  const  (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+
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Formal Methods of 
Describing Syntax

• Extended BNF (just abbreviations):
– Optional parts are placed in brackets ([ ])
<proc_call> -> ident [ ( <expr_list>)]
– Put alternative parts of RHSs in parentheses and 

separate them with vertical bars 
<term> -> <term> (+ | -) const
– Put repetitions (0 or more) in braces ({ })
<ident> -> letter {letter | digit}
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BNF and EBNF

• BNF:
<expr> → <expr> + <term>

| <expr> - <term>
| <term>

<term> → <term> * <factor>
| <term> / <factor>
| <factor>

• EBNF:
<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
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The Parsing Problem

• Goals of the parser, given an input program:
– Find all syntax errors; for each, produce an 

appropriate diagnostic message, and recover 
quickly

– Produce the parse tree, or at least a trace of the 
parse tree, for the program



Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-40

The Parsing Problem

• Two categories of parsers
– Top down - produce the parse tree, beginning at 

the root
• Order is that of a leftmost derivation

– Bottom up - produce the parse tree, beginning at 
the leaves

• Order is that of the reverse of a rightmost derivation

• Parsers look only one token ahead in the input
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The Parsing Problem

• Top-down Parsers
– Given a sentential form, xAα , the parser must 

choose the correct A-rule to get the next sentential 
form in the leftmost derivation, using only the first 
token produced by A

• The most common top-down parsing 
algorithms:
– Recursive descent - a coded implementation
– LL parsers - table driven implementation
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The Parsing Problem

• Bottom-up parsers
– Given a right sentential form, α, determine what 

substring of α is the right-hand side of the rule in 
the grammar that must be reduced to produce the 
previous sentential form in the right derivation

– The most common bottom-up parsing algorithms 
are in the LR family
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The Parsing Problem

• The Complexity of Parsing
– Parsers that work for any unambiguous grammar 

are complex and inefficient ( O(n3), where n is the 
length of the input )

– Compilers use parsers that only work for a subset 
of all unambiguous grammars, but do it in linear 
time ( O(n), where n is the length of the input )
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Recursive-Descent Parsing

• Recursive Descent Process
– There is a subprogram for each nonterminal in the 

grammar, which can parse sentences that can be 
generated by that nonterminal

– EBNF is ideally suited for being the basis for a 
recursive-descent parser, because EBNF  
minimizes the number of nonterminals
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Recursive-Descent Parsing

• A grammar for simple expressions:

<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
<factor> → id | ( <expr> )
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Recursive-Descent Parsing

• Assume we have a lexical analyzer named 
lex, which puts the next token code in 
nextToken

• The coding process when there is only one 
RHS:
– For each terminal symbol in the RHS, compare it 

with the next input token; if they match, continue, 
else there is an error

– For each nonterminal symbol in the RHS, call its 
associated parsing subprogram
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Recursive-Descent Parsing

/* Function expr
Parses strings in the language
generated by the rule:
<expr> → <term> {(+ | -) <term>}

*/

void expr() {

/* Parse the first term */

term(); 
…
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Recursive-Descent Parsing

/* As long as the next token is + or -, call 
lex to get the next token, and parse the 
next term */

while (nextToken == PLUS_CODE || 
nextToken == MINUS_CODE){

lex();
term();  

}
}

• This particular routine does not detect errors
• Convention: Every parsing routine leaves the next 

token in nextToken
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Recursive-Descent Parsing

• A nonterminal that has more than one RHS 
requires an initial process to determine which 
RHS it is to parse
– The correct RHS is chosen on the basis of the next 

token of input (the lookahead)
– The next token is compared with the first token 

that can be generated by each RHS until a match is 
found

– If no match is found, it is a syntax error
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Recursive-Descent Parsing

/* Function factor
Parses strings in the language
generated by the rule: 
<factor> -> id  |  (<expr>)  */

void factor() {

/* Determine which RHS */

if (nextToken) == ID_CODE)

/* For the RHS id, just call lex */

lex();
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Recursive-Descent Parsing

/* If the RHS is (<expr>) – call lex to pass 
over the left parenthesis, call expr, 

and
check for the right parenthesis */

else if (nextToken == LEFT_PAREN_CODE) {
lex();
expr();
if (nextToken == RIGHT_PAREN_CODE)

lex();
else

error();
}  /* End of else if (nextToken == ...  */

else error(); /* Neither RHS matches */
}
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Recursive-Descent Parsing

• The LL Grammar Class
– The Left Recursion Problem

• If a grammar has left recursion, either direct or 
indirect, it cannot be the basis for a top-down parser

– A grammar can be modified to remove left recursion
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Recursive-Descent Parsing

• The other characteristic of grammars that 
disallows top-down parsing is the lack of 
pairwise disjointness
– The inability to determine the correct RHS on the 

basis of one token of lookahead
– Def: FIRST(α) = {a | α =>* aβ }

(If α =>* ε, ε is in FIRST(α))
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Recursive-Descent Parsing

• Pairwise Disjointness Test:
– For each nonterminal, A, in the grammar that has 

more than one RHS, for each pair of rules, A → αi
and A → αj, it must be true that 

FIRST(αi)  FIRST(αj) = φ
• Examples:

A → a  |  bB |  cAb
A → a  |  aB
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Recursive-Descent Parsing

• Left factoring can resolve the problem
Replace

<variable> → identifier  |  identifier [<expression>]
with

<variable> → identifier <new>
<new> → ε |  [<expression>]

or
<variable> → identifier [[<expression>]]
(the outer brackets are metasymbols of EBNF)
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Bottom-up Parsing

• The parsing problem is finding the correct 
RHS in a right-sentential form to reduce to get 
the previous right-sentential form in the 
derivation
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Bottom-up Parsing

•Intuition about handles:
– Def: β is the handle of the right sentential form
γ = αβw if and only if S =>*rm αAw =>rm αβw

– Def: β is a phrase of the right sentential form
γ if and only if S =>* γ = α1Aα2 =>+ α1βα2

– Def: β is a simple phrase of the right sentential form 
γ if and only if S =>* γ = α1Aα2 => α1βα2
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Bottom-up Parsing

• Intuition about handles:
– The handle of a right sentential form is its leftmost 

simple phrase
– Given a parse tree, it is now easy to find the 

handle
– Parsing can be thought of as handle pruning
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Bottom-up Parsing

• Shift-Reduce Algorithms
– Reduce is the action of replacing the handle on the 

top of the parse stack with its corresponding LHS
– Shift is the action of moving the next token to the 

top of the parse stack
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Bottom-up Parsing

• Advantages of LR parsers:
– They will work for nearly all grammars that 

describe programming languages.
– They work on a larger class of grammars than 

other bottom-up algorithms, but are as efficient as 
any other bottom-up parser.

– They can detect syntax errors as soon as it is 
possible.

– The LR class of grammars is a superset of the  
class parsable by LL parsers.
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Bottom-up Parsing

• LR parsers must be constructed with a tool
• Knuth’s insight: A bottom-up parser could use 

the entire history of the parse, up to the 
current point, to make parsing decisions
– There were only a finite and relatively small 

number of different parse situations that could 
have occurred, so the history could be stored in a 
parser state, on the parse stack
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Bottom-up Parsing

• An LR configuration stores the state of an LR 
parser

(S0X1S1X2S2…XmSm, aiai+1…an$)
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Bottom-up Parsing

• LR parsers are table driven, where the table has 
two components, an ACTION table and a GOTO  
table
– The ACTION table specifies the action of the parser, 

given the parser state and the next token
• Rows are state names; columns are terminals

– The GOTO table specifies which state to put on top of 
the parse stack after a reduction action is done

• Rows are state names; columns are nonterminals
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Structure of An LR Parser
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Bottom-up Parsing

• Initial configuration: (S0, a1…an$)
• Parser actions:

– If ACTION[Sm, ai] = Shift S, the next 
configuration is:  

(S0X1S1X2S2…XmSmaiS, ai+1…an$)
– If ACTION[Sm, ai] = Reduce A → β and S = 

GOTO[Sm-r, A], where r = the length of β, the next 
configuration is

(S0X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)
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Bottom-up Parsing

• Parser actions (continued):
– If ACTION[Sm, ai] = Accept, the parse is complete 

and no errors were found.
– If ACTION[Sm, ai] = Error, the parser calls an 

error-handling routine.
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LR Parsing Table
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Bottom-up Parsing

• A parser table can be generated from a given 
grammar with a tool, e.g., yacc
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Semantic Analysis

• Once sentence structure is understood, we can 
try to understand “meaning”
– But meaning is too hard for compilers

• Compilers perform limited analysis to catch 
inconsistencies

• Some do more analysis to improve the 
performance of the program
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Semantic Analysis in English

• Example:
Jack said Jerry left his assignment at home.

What does “his” refer to? Jack or Jerry?

• Even worse:
Jack said Jack left his assignment at home?

How many Jacks are there?
Which one left the assignment?
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Semantic Analysis in 
Programming
• Programming 

languages define 
strict rules to avoid 
such ambiguities

• This C++ code 
prints “4”; the inner 
definition is used

{
int Jack = 3;
{

int Jack = 4;
cout << Jack;

}
}
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More Semantic Analysis

• Compilers perform many semantic checks 
besides variable bindings

• Example:
Jack left her homework at home.

• A “type mismatch” between her and Jack; we 
know they are different people
– Presumably Jack is male
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Optimization

• No strong counterpart in English, but akin to 
editing

• Automatically modify programs so that they
– Run faster
– Use less memory
– In general, conserve some resource

• The project has no optimization component
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Optimization Example

X = Y * 0   is the same as  X = 0

NO!

Valid for integers, but not for floating point 
numbers
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Code Generation

• Produces assembly code (usually)

• A translation into another language
– Analogous to human translation
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Intermediate Languages

• Many compilers perform translations between 
successive intermediate forms
– All but first and last are intermediate languages

internal to the compiler
– Typically there is 1 IL

• IL’s generally ordered in descending level of 
abstraction
– Highest is source
– Lowest is assembly
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Intermediate Languages (Cont.)

• IL’s are useful because lower levels expose 
features hidden by higher levels
– registers
– memory layout
– etc.

• But lower levels obscure high-level meaning
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Issues

• Compiling is almost this simple, but there are 
many pitfalls.

• Example: How are erroneous programs 
handled?

• Language design has big impact on compiler
– Determines what is easy and hard to compile
– Course theme: many trade-offs in language design
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Compilers Today

• The overall structure of almost every compiler 
adheres to our outline

• The proportions have changed since 
FORTRAN
– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases, 
lexing and parsing are cheap
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Trends in Compilation

• Compilation for speed is less interesting. But:
– scientific programs
– advanced processors (Digital Signal Processors, 

advanced speculative architectures)

• Ideas from compilation used for improving 
code reliability:
– memory safety
– detecting concurrency errors (data races)
– ... 


