
1

Essential Computing
for

Bioinformatics

Bienvenido Vélez
UPR Mayaguez

Lecture 1

First Steps in Computing

Reference: How to Think Like a Computer Scientist: Learning with Python Ch 1-2

2

Outline

 Course Description
 Educational Objectives
 Major Course Modules
 First steps in computing with Python

3

Course Description (Revised)

This course provides a broad introductory discussion
of essential computer science concepts that have wide
applicability in the natural sciences. Particular
emphasis will be placed on applications to
BioiInformatics. The concepts will be motivated by
practical problems arising from the use of bioinformatic
research tools such as genetic sequence databases.
Concepts will be discussed in a weekly lecture and will
be practiced via simple programming exercises using
Python, an easy to learn and widely available scripting
language.

4

Educational Objectives (Revised)
 Awareness of the mathematical models of

computation and their fundamental limits
 Basic understanding of the inner workings of a

computer system
 Ability to extract useful information from various

bio-informatics data sources
 Ability to design computer programs in a modern

high level language to analyze bio-informatics data.
 Ability to transfer information among relational

databases, spreadsheets and other data analysis
tools

 Experience with commonly used software
development environments and operating systems

5

Major Course Modules

39TOTAL

3Other Data Analysis Tools

6Relational Databases and SQL

6Extracting Information from Database Files

12High-level Programming (Python)

3Mathematical Computing Models

6Using Bioinformatics Data Sources

3First Steps in Computing

HoursModule

6

Important Topics will be Interleaved
Throughout the Course

 Programming Language Transalation Methods
 The Software Development Cycle
 Fundamental Principles of Software Engineering
 Basic Data Structures for Bioinformatics
 Design and Analysis of Bioinformatics Algorithms

7

First Steps in Computing

 Need a mechanism for expressing computation
 Need to understand computing in order to understand

the mechanism
 Solution: Write your first bioinformatics program in a

very high level language such as:

Solves the Chicken and Egg Problem!

www.python.org

8

Main Advantages of Python
 Familiar to C/C++/C#/Java Programmers
 Very High Level
 Interpreted and Multi-platform
 Dynamic
 Object-Oriented
 Modular
 Strong string manipulation
 Lots of libraries available
 Runs everywhere
 Free and Open Source
 Track record in Bio-Informatics (BioPython)

9

Downloading and Installing Python
on a Windows XP PC

 Go to www.python.org

 Go to DOWNLOAD section

 Click on Python 2.5 Windows installer

 Save ~10MB file into your hardrive

 Double click on file to install

 Follow instructions

 Start -> All Programs -> Python 2.5 -> Idle

Most Unix Systems today have Python pre-installed

10

Idle: The Python Shell

11

PL Translation Methods

• Translate to executable
• Then Run

• Run and Translate
Simultaneously

Interpretation

Compilation

12

PL Translation Methods

• Some errors caught before running
• Faster Execution

• Faster write-execute cycle
• Easier debugging
• Portable

Interpretation

Compilation

13

Python as a Number Cruncher
Integer Expressions

>>> print 1 + 3
4
>>> print 6 * 7
42
>>> print 6 * 7 + 2
44
>>> print 2 + 6 * 7
44
>>> print 6 - 2 - 3
1
>>> print 6 - (2 - 3)
7
>>> print 1 / 3
0
>>>

/ and * higher precedence than + and -

integer division truncates fractional part

Operators are left associative

Parenthesis can override precedence

Integer Numbers and Real Numbers
are DIFFERENT types of values

Cut and paste these
examples into your
Python interpreter

14

Integer Numbers
Two's Complement Encoding

For Computer Engineering Convenience
All Data Inside the Computer is Encoded in Binary Form

 Half of the codes for positives and zero

 Half of the codes for negatives

 Negatives always start with 1

 Positives always start with 0

 Largest positive = 2(n-1) -1, n = # of bits

 Smallest negative = -2(n-1), n = # of bits

 In binary addition ⇒ 2(n-1) -1 + 1 = -2(n-1),

4-bit encoding

15

Floating Point Expressions

>>> print 1.0 / 3.0
0.333333333333
>>> print 1.0 + 2
3.0
>>> print 3.3 * 4.23
13.959
>>> print 3.3e23 * 2
6.6e+23
>>> print float(1) /3
0.333333333333
>>>

Mixed operations auto-converted to float

Scientific notation allowed

12 decimal digits default precision

Explicit conversion necessary to
force floating point result

16

What is a Floating Point Value?

Virtually all systems use this IEEE 754 Floating Point Standard

significandexponentsign

 Precision limited by number of
bits in significand

 Range limited by number of
bits in exponent

 Different behavior form base
10 floating point

 Some number that require
many significand bits in base 10
may only require a few bits in
base 2 to be represented
exactly

 Rounding in base 2 may not
yield intuitive results

17

String Expressions
>>> print "aaa"
aaa
>>> print "aaa" + "ccc"
aaaccc
>>> len("aaa")
3
>>> len ("aaa" + "ccc")
6
>>> print "aaa" * 4
aaaaaaaaaaaa
>>> "aaa"
'aaa'
>>> "c" in "atc"
True
>>> "g" in "atc"
False
>>> "act" [1]
'c'

+ operator concatenates string

len is a function that returns an integer
representing the length of its
argument string

any string expression can be an argument

* operator replicates strings

a value is an expression that yields itself

in operator finds a string inside another
And returns a boolean result

Strings are great for representing DNA!

[]'s can be used to extract individual
characters from strings

18

Preview of Functions

 Functions receive zero or more arguments
 Arguments are expressions that yield values
 Functions return a single object
 The function call is itself and expression that yields the object

returned by the function
 The behavior of a function is established by an unwritten

"contract"
 Example: The len function in Python receives one argument that

must yield a string value. The function returns and integer value
representing the number of characters in the string

 If the programmer violates the contract the function does not have
to behave properly

<function_name> (<arg1>, …, <argn>)

We will spend lots of time talking about functions later in the course

19

Operator Precedence Rules

Table taken from Introduction to Programming Using Python

What is the difference between and OPERATOR and a FUNCTION?

20

Statements vs. Expressions

 Expressions yield values
 Statements do not
 All expressions can be used as single statements
 Statements cannot be used in place of expressions
 When an expression is used as a statement, its value

is computed yet ignored by the interpreter
 A "program" or "script" is s sequence of statements

Expressions:

5
avogadro

"Hello"
len(seq)

Statements:
print "Hello"

avogadro=6.022e23
"Hello"

len(seq)

21

Values Can Have (MEANINGFULMEANINGFUL) Names

>>> cmPerInch = 2.54
>>> avogadro = 6.022e23
>>> prompt = "Enter your name ->"
>>> print cmPerInch
2.54
>>> print avogadro
6.022e+023
>>> print prompt
Enter your name ->
>>> print "prompt"
prompt
>>> prompt = 5
>>> print prompt
5
>>>

= statement binds a name to a value

print the value bound to a name

= can change the value associated
with a name even to a different type

use camel case for multi-word names

Quotes tell Python NOT to evaluate the
expression inside the quotes

Naming values is the most primitive abstraction mechanism provided by PL's

22

Python's 28 Keywords
Cannot be used as names

Do not use these as names as they will confuse the interpreter

23

Values Have Types
>>> type "hello"
SyntaxError: invalid syntax
>>> type("hello")
<type 'str'>
>>> type(3)
<type 'int'>
>>> type(3.0)
<type 'float'>
>>> type(avogadro)
<type 'float'>
>>> type (prompt)
<type 'int'>
>>> type(cmPerInch)
<type 'float'>

type is another function, not an operator

The type of a name is the type of the
value bound to it

the "type" is itself a value

24

How Do I Run My Programs?

F5

25

Using Strings to Represent DNA
Sequences

>>> codon="atg"
>>> codon * 3
'atgatgatg'
>>> seq1 ="agcgccttgaattcggcaccaggcaaatctcaaggagaagttccggggagaaggtgaaga"
>>> seq2 = "cggggagtggggagttgagtcgcaagatgagcgagcggatgtccactatgagcgataata"
>>> seq = seq1 + seq2
>>> seq
'agcgccttgaattcggcaccaggcaaatctcaaggagaagttccggggagaaggtgaagacggggagtgggg
agttgagtcgcaagatgagcgagcggatgtccactatgagcgataata'
>>> seq[1]
'g'
>>> seq[0]
'a'
>>> "a" in seq
True
>>> len(seq1)
60
>>> len(seq)
120

First nucleotide starts at 0

26

More Bioinformatics
Extracting Information from Sequences

>>> from string import *
>>> seq[0] + seq[1] + seq[2]
'agc'
>>> seq[0:3]
'agc'
>>> seq[3:6]
'gcc'
>>> count(seq, 'a')
35
>>> count(seq, 'c')
21
>>> count(seq, 'g')
44
>>> count(seq, 't')
20
>>> long = len(seq)
>>> nb_a = count(seq, 'a')
>>> float(nb_a) / long * 100
29.166666666666668

Find the first codon from the sequence

get 'slices' from strings:

How many of each base does
this sequence contain?

Count the percentage of
each base on the sequence.

Binds additional built-in functions for strings

27

More Fun with DNA Sequences
>>> from string import *
>>> dna =
"tgaattctatgaatggactgtccccaaagaagtaggacccactaatgcagatcctggatccctagctaagatgtattattctgctgt
gaattcgatcccactaaagat"
>>> EcoRI = "GAATTC"
>>> BamHI = 'GGATCC'
>>> EcoRI = lower(EcoRI)
>>> EcoRI
'gaattc'
>>> count(dna, EcoRI)
2
>>> find(dna, EcoRI)
1
>>> find(dna, EcoRI, 2)
88
>>> BamHI = lower(BamHI)
>>> find(dna, BamHI)
54
>>> gc=count(dna,"g")+count(dna,"c")/float(len(dna))
>>> gc
21.222222222222221

find and count are case sensitive

count returns the # of occurences of a pattern

Functions can have multiple arguments

Find(string,pattern,n) returns the position of the nth
occurrence of the pattern in the string

GC-calculation

Find(string,pattern) returns the position of the first
occurrence of the pattern in the string

28

Comment Your Code!
 How?

− Precede comment with # sign
− Interpreter ignores rest of the line

 Why?
− Make code more readable by others AND yourself?

 When?
− When code by itself is not evident

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

− Need to say something but PL cannot express it
percentage = (minute * 100) / 60 # FIX: handle float division

Please do not over do it X = 5 # Assign 5 to x

