
1

Essential Computing
for

Bioinformatics

Bienvenido Vélez
UPR Mayaguez

Lecture 4

High-level Programming with Python

Part I: Controlling the flow of your program

Reference: How to Think Like a Computer Scientist: Learning with Python (Ch 3-6)

2

Outline

 Functions
 Decision statements
 Iteration statements
 Recursion

3

Built-in Functions

>>> import math

>>> decibel = math.log10 (17.0)

>>> angle = 1.5

>>> height = math.sin(angle)

>>> degrees = 45

>>> angle = degrees * 2 * math.pi / 360.0

>>> math.sin(angle)

0.707106781187

To convert from degrees to radians,
divide by 360 and multiply by 2*pi

Can you avoid having to write the formula to

convert degrees to radians every time?

4

Defining Your Own Functions

def <NAME> (<LIST OF PARAMETERS>):
<STATEMENTS>

import math
def radians(degrees):

result = degrees * 2 * math.pi / 360.0
return(result)
>>> def radians(degrees):
... result=degrees * 2 * math.pi / 360.0
... return(result)
...

>>> radians(45)
0.78539816339744828
>>> radians(180)
3.1415926535897931

5

Monolithic Code
From string import *

cds = '''atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaaa
tttcgggtgccgacctgacgcgcccgttaagcgataatcagtttgaacagctttaccatgcggtg
ctgcgccatcaggtggtgtttctacgcgatcaagctattacgccgcagcagcaacgcgcgctggc
ccagcgttttggcgaattgcatattcaccctgtttacccgcatgccgaaggggttgacgagatca
tcgtgctggatacccataacgataatccgccagataacgacaactggcataccgatgtgacattt
attgaaacgccacccgcaggggcgattctggcagctaaagagttaccttcgaccggcggtgatac
gctctggaccagcggtattgcggcctatgaggcgctctctgttcccttccgccagctgctgagtg
ggctgcgtgcggagcatgatttccgtaaatcgttcccggaatacaaataccgcaaaaccgaggag
gaacatcaacgctggcgcgaggcggtcgcgaaaaacccgccgttgctacatccggtggtgcgaac
gcatccggtgagcggtaaacaggcgctgtttgtgaatgaaggctttactacgcgaattgttgatg
tgagcgagaaagagagcgaagccttgttaagttttttgtttgcccatatcaccaaaccggagttt
caggtgcgctggcgctggcaaccaaatgatattgcgatttgggataaccgcgtgacccagcacta
tgccaatgccgattacctgccacagcgacggataatgcatcgggcgacgatccttggggataaac
cgttttatcgggcggggtaa'''.replace('\n','')

gc = float(count(cds, 'g') + count(cds, 'c'))/ len(cds)

print gc

6

Step 1: Wrap Reusable Code in
Function

def gcCount(sequence):
gc = float(count(sequence, 'g') + count(sequence, 'c'))/ len(sequence)
print gc

7

Step 2: Add function to script file

 Save script in a file
 Re-load when you want to use the functions
 No need to retype your functions
 Keep a single group of related functions and declarations in each file

8

Why Functions?

 Powerful mechanism for creating building blocks
 Code reuse
 Modularity
 Abstraction (i.e. hiding irrelevant detail)

9

Function Design Guidelines

 Should have a single well defined 'contract'
− E.g. Return the gc-value of a sequence

 Contract should be easy to understand and remember
 Should be as general as possible
 Should be as efficient as possible
 Should not mix calculations with I/O

10

Applying the Guidelines

def gcCount(sequence):
gc = float(count(sequence, 'g') + count(sequence, 'c'))/ len(sequence)
print gc

What can be improved?

def gcCount(sequence):
gc = float(count(sequence, 'g' + count(sequence, 'c'))/ len(sequence)
return gc

Why is this better?

 More reusable function
 Can call it to get the gcCount and then decide what to do with the value
 May not have to print the value
 Function has ONE well-defined objective or CONTRACT

11

Decisional statements

if <be1> :
<block1>

elif <be2>:
<block2>

…
…
else:

<blockn+1>

 Each <bei> is a BOOLEAN expressions
 Each <blocki>is a sequence of statements
 Level of indentation determines what’s inside each block

Indentation has meaning
in Python

12

Compute the complement of a DNA base

def complementBase(base):
 if (base == 'A'):
 return 'T'
 elif (base == 'T'):
 return 'A'
 elif (base == 'C'):
 return 'G'
 elif (base == 'G'):
 return 'C'
 else:
 return 'X'

How can we improve this function?

13

Boolean Expressions

 Expressions that yield True of False values
 Ways to yield a Boolean value

− Boolean constants: True and False
− Comparison operators (>, <, ==, >=, <=)
− Logical Operators (and, or, not)
− Boolean functions
− 0 (means False)
− Empty string '’ (means False)

14

A strange Boolean function

def test(x):
 if x:
 return True
 else:
 return False

What can you use this function for?

What types of values can it accept?

15

Some Useful Boolean Laws

 Lets assume that b,a are Boolean values:
− (b and True) = b
− (b or True) = True
− (b and False) = False
− (b or False) = b
− not (a and b) = (not a) or (not b)
− not (a or b) = (not a) and (not b)

De Morgan’s Laws

16

Recursive Functions
A classic!

>>> def fact(n):
... if (n==0):
... return 1
... else:
... return n * fact(n - 1)
...
>>> fact(5)
120
>>> fact(10)
3628800
>>> fact(100)
9332621544394415268169923885626670049071596826438162146859296389521
7599993229915608941463976156518286253697920827223758251185210916864
000000000000000000000000L
>>>

17

Recursion Basics

n = 3
fact(2)

fact(3)

n = 2

n = 1

fact(1)

n = 0

fact(0)

1

1 * 1 = 1

2 * 1 = 2

3 * 2 = 6

n = 3

n = 2

n = 1

n = 0

def fact(n):
 if (n==0):
 return 1
 else:
 return n * fact(n - 1)

Interpreter keeps a
stack of activation records

18

Infinite Recursion
def fact(n):
 if (n==0):
 return 1
 else:
 return n * fact(n - 1)

What if you call fact 5.5? Explain

When using recursion always think about how will it stop or converge

19

Exercises on Functions

1. Compute the number of x bases in a sequence where x is one of
{ C, T, G, A }

2. Compute the molecular mass of a sequence
3. Compute the complement of a sequence
4. Determine if two sequences are complement of each other
5. Compute the number of stop codons in a sequence
6. Determine if a sequence has a subsequence of length greater

than n surrounded by stop codons
7. Return the starting position of the subsequence identified in

exercise 6

Write recursive Python functions to satisfy the following specifications:

20

Runtime Complexity
'Big O' Notation

def fact(n):
 if (n==0):
 return 1
 else:
 return n * fact(n - 1)

 How 'fast' is this function?

 Can we come up with a more efficient version?

 How can we measure 'efficiency'

 Can we compare algorithms independently
from a specific implementation, software or
hardware?

21

Runtime Complexity
'Big O' Notation

Big Idea
Measure the number of steps taken by the

algorithm as a asymptotic function of the size of its input

 What is a step?
 How can we measure the size of an input?
 Answer in both cases: YOU CAN DEFINE THESE!

22

'Big O' Notation
Factorial Example

 A 'step' is a function call to fact
 The size of an input value n is n itself

T(0) = 0
T(n) = T(n-1) + 1 = (T(n-2) + 1) + 1 = … = T(n-n) + n = T(0) + n = 0 + n = n

Step 1: Count the number of steps for input n

Step 2: Find the asymptotic function

T(n) = O(n)

23

Another Classic

Python version of Fibonacci

def fibonacci (n):
if n == 0 or n == 1:

return 1
else:

return fibonacci(n-1) + fibonacci(n-2)

24

Big O for Fibonacci

Whiteboard exercise

What is the runtime complexity of Fibonacci? Is this efficient?

Efficient ~ Polynomial Time complexity

25

Iteration

while <be>:
<block>SYNTAX

SEMANTICS Repeat the execution of
<block> as long as
expression <be>
remains true

SYNTAX = FORMAT
SEMANTICS = MEANING

26

Iterative Factorial
def iterFact(n):
 result = 1
 while(n>0):
 result = result * n
 n = n - 1
 return result

Work out the runtime complexity:

whiteboard

27

Iterative Fibonacci
Code:

Runtime complexity:

whiteboard

whiteboard

28

Exercises on Functions

1. Compute the number of x bases in a sequence where x is one of
{ C, T, G, A }

2. Compute the molecular mass of a sequence
3. Compute the complement of a sequence
4. Determine if two sequences are complement of each other
5. Compute the number of stop codons in a sequence
6. Determine if a sequence has a subsequence of length greater

than n surrounded by stop codons
7. Return the starting position of the subsequence identified in

exercise 6

Write iterative Python functions to satisfy the following specifications:

29

Formatted Output using % operator

For more details visit: http://docs.python.org/lib/typesseq-strings.html

<format> % <values>

>>> '%s is %d years old' % ('John', 12)
'John is 12 years old'
>>>

 <format> is a string
 <values> is a list of values n parenthesis (a.k.a. a tuple)
 % produces a string replacing each %x with a correding value from the tuple

30

Bioinformatics Example

def restrict(dna, enz):
'print all start positions of a restriction site'
site = find (dna, enz)
while site != -1:

print 'restriction site %s at position %d' % (enz, site)
site = find (dna, enz, site + 1)

Example from Pasteur Institute Bioinformatics Using Python

Description of the
function’s contract

Is this a good name for this function?

>>> restrict(cds,'gccg')
restriction site gccg at position 32
restriction site gccg at position 60
restriction site gccg at position 158
restriction site gccg at position 225
restriction site gccg at position 545
restriction site gccg at position 774
>>>

31

The For Loop
Another Iteration Statement

for <var> in <sequence>:
<block>SYNTAX

SEMANTICS Repeat the execution of
the <block> binding
variable <var> to each
element of the sequence

32

For Loop Example

def iterFact2(n):
 result = 1
 for i in xrange(1,n+1):
 result = result * i
 return result

Xrange(start,end,step) generates a sequence of values :

 start = first value
 end = value right after last one
 step = increment

33

Nested For Loops
Example: Multiplication Table

def simpleMultiplicationTable(n):

 for i in xrange(0,n+1,1):

 for j in xrange(0,n+1):

 print i, '*',j, '=', i*j

Inner loops iterates from beginning to end
for each single iteration of outer loop

Semantics

j

i

34

Improving the Format of the Table

whiteboard

