
ICOM 4015: Advanced
Programming	

Lecture 3

Big Java by Cay Horstmann
Copyright © 2009 by John
Wiley & Sons. All rights
reserved.

Reading: Chapter Three: Implementing Classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Chapter Three - Implementing Classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  To become familiar with the process of implementing classes

•  To be able to implement simple methods

•  To understand the purpose and use of constructors

•  To understand how to access instance variables and local
variables

•  To be able to write javadoc comments

G To implement classes for drawing graphical shapes

Chapter Goals

Key Concepts

•  The Elements of a Java Class Declaration

•  Modeling Objects Using Classes

•  Separating the the API (WHAT) from the
Implementation (HOW)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Anatomy of a Class Declaration

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 public class <NAME> {

 //Private instance variables

 //Constructors

 //Public Getters and other Accessor Instance Methods

 //Public Setters and other Modifier Instance Methods

 //Private Instance Methods

}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Example: tally counter

•  Simulator statements:
Counter tally = new Counter();
tally.count();
tally.count();
int result = tally.getValue(); // Sets result to 2

•  Each counter needs to store a variable that keeps track of how
many times the counter has been advanced

Instance Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Instance variables store the data of an object

•  Instance of a class: an object of the class

•  The class declaration specifies the instance variables:
public class Counter
{
 private int value;
 …
}

Instance Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  An instance variable declaration consists of the following parts:

•  access specifier (such as public)

•  type of variable (such as int)

•  name of variable (such as value)

•  Each object of a class has its own set of instance variables

•  You should declare all instance variables as private

Instance Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Instance Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 3.1 Instance Variable Declaration

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Accessing Instance Variables

•  The count method advances the counter value by 1:

public void count()
{
 value = value + 1;
}

•  The getValue method returns the current value:

public int getValue()
{
 return value;
}

•  Private instance variables can only be accessed by methods of
the same class

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Complete Counter Class

public class Counter
{
 // private instance variables
 private int value;

 // Constructors
 public Counter()

 {
 value= 0;
 }

 public void count() {
 {
 value = value + 1;
 }
 public int getValue() {
 return value;
 }

}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Supply the body of a method public void reset() that
resets the counter back to zero.

 Answer:
public void reset()
{
 value = 0;
}

Self Check 3.1

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose you use a class Clock with private instance variables
hours and minutes. How can you access these variables in
your program?

 Answer: You can only access them by invoking the methods of
the Clock class.

Self Check 3.2

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Encapsulation is the process of hiding object data and
providing methods for data access

•  To encapsulate data, declare instance variables as private
and declare public methods that access the variables

•  Encapsulation allows a programmer to use a class without
having to know its implementation

•  Information hiding makes it simpler for the implementer of a
class to change implementations without affecting users of the
API

Encapsulation:
Separation of API from Its Implementation

Every Problem in Computer Science can be Solved …
 by Another Level of Indirection

-David John Wheeler

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 3.2 Class Declaration

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Consider the Counter class. A counter’s value starts at 0 and is
advanced by the count method, so it should never be negative.
Suppose you found a negative value variable during testing.
Where would you look for the error?

 Answer: In one of the methods of the Counter class.

Self Check 3.3

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

In Chapters 1 and 2, you used System.out as a black box to
cause output to appear on the screen. Who designed and
implemented System.out?

 Answer: The programmers who designed and implemented
the Java library.

Self Check 3.4

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose you are working in a company that produces personal
finance software. You are asked to design and implement a class
for representing bank accounts. Who will be the users of your
class?

 Answer: Other programmers who work on the personal finance
application.

Self Check 3.5

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Behavior of bank account (abstraction):
•  deposit money
•  withdraw money
•  get balance

Specifying the Public Interface of a Class

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Methods of BankAccount class:
• deposit
• withdraw
• getBalance

•  We want to support method calls such as the following:
harrysChecking.deposit(2000);
harrysChecking.withdraw(500);
System.out.println(harrysChecking.getBalance());

Specifying the Public Interface of a Class: Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A constructor initializes the instance variables

•  Constructor name = class name
 public BankAccount()
 {
 // body--filled in later
 }

•  Constructor body is executed when new object is created

•  Statements in constructor body will set the internal data of the
object that is being constructed

•  All constructors of a class have the same name

•  Compiler can tell constructors apart because they take different
parameters

Specifying the Public Interface of a Class: Constructor
Declaration

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Parts of a Method Declaration
•  access specifier (such as public)
•  return type (such as String or void)
•  method name (such as deposit)
•  list of parameters (double amount for deposit)
•  method body in { }

Examples:
• public void deposit(double amount) { . . . }
• public void withdraw(double amount) { . . . }
• public double getBalance() { . . . }

Specifying the Public Interface of a Class: Method
Declaration

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  access specifier (such as public)

•  return type (such as void or double)

•  method name (such as deposit)

•  list of parameter variables (such as double amount)

Examples:
• public void deposit(double amount)
• public void withdraw(double amount)
• public double getBalance()

Specifying the Public Interface of a Class: Method Header

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The public constructors and methods of a class form the public
interface of the class:

public class BankAccount
{
 // private instance variables--filled in later

 // Constructors
 public BankAccount()

 {
 // body--filled in later
 }

 public BankAccount(double initialBalance)
 {
 // body--filled in later
 } Continued

BankAccount Public Interface

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 // Public Instance Methods
 public void deposit(double amount)
 {
 // body--filled in later
 }
 public void withdraw(double amount)
 {
 // body--filled in later
 }
 public double getBalance()
 {
 // body--filled in later
 }
}

BankAccount Public Interface (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How can you use the methods of the public interface to empty the
harrysChecking bank account?

 Answer:
 harrysChecking.withdraw(harrysChecking.getBalance())

Self Check 3.6

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is wrong with this sequence of statements?
BankAccount harrysChecking = new BankAccount(10000);
System.out.println(harrysChecking.withdraw(500));

 Answer: The withdraw method has return type void. It
doesn’t return a value. Use the getBalance method to obtain
the balance after the withdrawal.

Self Check 3.7

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose you want a more powerful bank account abstraction that
keeps track of an account number in addition to the balance. How
would you change the public interface to accommodate this
enhancement?

 Answer: Add an accountNumber parameter to the
constructors, and add a getAccountNumber method. There is
no need for a setAccountNumber method – the account number
never changes after construction.

Self Check 3.8

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

/**
 Withdraws money from the bank account.
 @param amount the amount to withdraw
*/
public void withdraw(double amount)
{
 //implementation filled in later
}
/**
 Gets the current balance of the bank account.
 @return the current balance
*/
public double getBalance()
{
 //implementation filled in later
}

Commenting the Public Interface

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

/**
 A bank account has a balance that can be changed by
 deposits and withdrawals.
*/
public class BankAccount
{
 . . .
}

•  Provide documentation comments for
•  every class
•  every method
•  every parameter
•  every return value

Class Comment

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Javadoc Method Summary

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Javadoc Method Detail

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Provide documentation comments for the Counter class of
Section 3.1.

 Answer:
/**
 This class models a tally counter.
*/
public class Counter
{
 private int value;
 /**
 Gets the current value of this counter.
 @return the current value
 */
 public int getValue()
 {
 return value;
 }

Self Check 3.9

Continued

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Advances the value of this counter by 1.
 */
 public void count()
 {
 value = value + 1;
 }
}

Self Check 3.9 (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose we enhance the BankAccount class so that each account
has an account number. Supply a documentation comment for the
constructor
public BankAccount(int accountNumber, double initialBalance)

 Answer:
/**
 Constructs a new bank account with a given initial balance.
 @param accountNumber the account number for this account
 @param initialBalance the initial balance for this account
*/

Self Check 3.10

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why is the following documentation comment questionable?
/**
 Each account has an account number.
 @return the account number of this account
*/
public int getAccountNumber()

 Answer: The first sentence of the method description should
 describe the method – it is displayed in isolation in the summary
 table.

Self Check 3.11

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Constructors contain instructions to initialize the instance
variables of an object:

 public BankAccount()
 {
 balance = 0;
 }

 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }

Implementing Constructors

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Statement:

BankAccount harrysChecking = new BankAccount(1000);

•  Create a new object of type BankAccount

•  Call the second constructor (because a construction parameter is
supplied in the constructor call)

•  Set the parameter variable initialBalance to 1000

•  Set the balance instance variable of the newly created object to
initialBalance

•  Return an object reference, that is, the memory location of the object, as
the value of the new expression

•  Store that object reference in the harrysChecking variable

Constructor Call Example

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 3.3 Method Declaration

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

• deposit method:
 public void deposit(double amount)
 {
 balance = balance + amount;
 }

Implementing Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Statement:

 harrysChecking.deposit(500);

•  Set the parameter variable amount to 500

•  Fetch the balance variable of the object whose location is stored in
harrysChecking

•  Add the value of amount to balance

•  Store the sum in the balance instance variable, overwriting the old
value

Method Call Example

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

• public void withdraw(double amount)
 {
 balance = balance - amount;
 }

• public double getBalance()
 {
 return balance;
 }

Implementing Methods

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 A bank account has a balance that can be changed by
 deposits and withdrawals.
 */
 public class BankAccount
 {
 private double balance;

 /**
 Constructs a bank account with a zero balance.
 */
 public BankAccount()
 {
 balance = 0;
 }

 /**
 Constructs a bank account with a given balance.
 @param initialBalance the initial balance
 */
 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }

Continued

The Complete Bank Account Class Declaration

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Deposits money into the bank account.
 @param amount the amount to deposit
 */
 public void deposit(double amount)
 {
 balance = balance + amount;
 }

 /**
 Withdraws money from the bank account.
 @param amount the amount to withdraw
 */
 public void withdraw(double amount)
 {
 balance = balance - amount;
 }

Continued

The Complete Bank Account Class Declaration

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Gets the current balance of the bank account.
 @return the current balance
 */
 public double getBalance()
 {
 return balance;
 }
 }

The Complete Bank Account Class Declaration

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose we modify the BankAccount class so that each bank
account has an account number. How does this change affect the
instance variables?

 Answer:
An instance variable

private int accountNumber;

needs to be added to the class.

Self Check 3.12

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why does the following code not succeed in robbing mom’s bank
account?

public class BankRobber
{
 public static void main(String[] args)
 {
 BankAccount momsSavings = new BankAccount(1000);
 momsSavings.balance = 0;
 }
}

 Answer: Because the balance instance variable is
accessed from the main method of BankRobber. The compiler
will report an error because balance has private access in
BankAccount.

Self Check 3.13

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Rectangle class has four instance variables: x, y, width,
and height. Give a possible implementation of the getWidth
method.

 Answer:
public int getWidth()
{
 return width;
}

Self Check 3.14

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Give a possible implementation of the translate method of the
Rectangle class.

 Answer: There is more than one correct answer. One
possible implementation is as follows:

public void translate(int dx, int dy)
{
 int newx = x + dx;
 x = newx;
 int newy = y + dy;
 y = newy;
}

Self Check 3.15

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Unit test: Verifies that a class works correctly in isolation,
outside a complete program

•  To test a class, use an environment for interactive testing, or
write a tester class

•  Tester class: A class with a main method that contains
statements to test another class

•  Typically carries out the following steps:
1. Construct one or more objects of the class that is being tested
2.  Invoke one or more methods
3. Print out one or more results
4. Print the expected results

Continued

Unit Testing

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 A class to test the BankAccount class.
 */
 public class BankAccountTester
 {
 /**
 Tests the methods of the BankAccount class.
 @param args not used
 */
 public static void main(String[] args)
 {
 BankAccount harrysChecking = new BankAccount();
 harrysChecking.deposit(2000);
 harrysChecking.withdraw(500);
 System.out.println(harrysChecking.getBalance());
 System.out.println("Expected: 1500");
 }
 }

Program Run:
1500
Expected: 1500

ch03/account/BankAccountTester.java

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Details for building the program vary. In most environments, you
need to carry out these steps:
1. Make a new subfolder for your program
2. Make two files, one for each class
3. Compile both files
4. Run the test program

Unit Testing (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Testing With BlueJ

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

When you run the BankAccountTester program, how many objects
of class BankAccount are constructed? How many objects of type
BankAccountTester?

 Answer: One BankAccount object, no BankAccountTester
 object. The purpose of the BankAccountTester class is
 merely to hold the main method.

Self Check 3.16

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why is the BankAccountTester class unnecessary in development
environments that allow interactive testing, such as BlueJ?

 Answer: In those environments, you can issue interactive
 commands to construct BankAccount objects, invoke methods,
 and display their return values.

Self Check 3.17

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Local and parameter variables belong to a method
• When a method or constructor runs, its local and parameter variables
come to life

• When the method or constructor exits, they are removed immediately

•  Instance variables belongs to an objects, not methods
• When an object is constructed, its instance variables are created

• The instance variables stay alive until no method uses the object any
longer

•  Instance variables are initialized to a default value, but you
must initialize local variables

Local Variables vs. Instance Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  In Java, the garbage collector periodically reclaims objects
when they are no longer used

•  Instance variables are initialized to a default value, but you
must initialize local variables

Local Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Animation 3.1: Lifetime of Variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

What do local variables and parameter variables have in
common? In which essential aspect do they differ?

 Answer: Variables of both categories belong to methods – they
 come alive when the method is called, and they die when the
 method exits. They differ in their initialization. Parameter
 variables are initialized with the call values; local variables must
 be explicitly initialized.

Self Check 3.18

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why was it necessary to introduce the local variable change in
the giveChange method? That is, why didn’t the method simply
end with the statement

return payment - purchase;

 Answer: After computing the change due, payment and
purchase were set to zero. If the method returned payment -
purchase, it would always return zero.

Self Check 3.19

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  The implicit parameter of a method is the object on which the
method is invoked

• public void deposit(double amount)
 {
 balance = balance + amount;
 }

•  In the call

momsSavings.deposit(500)

The implicit parameter is momsSavings and the explicit
parameter is 500

•  When you refer to an instance variable inside a method, it
means the instance variable of the implicit parameter

Accessing Target Object Via Implicit Parameter

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  The this reference denotes the implicit parameter

• balance = balance + amount;

 actually means

 this.balance = this.balance + amount;

•  When you refer to an instance variable in a method, the compiler
automatically applies it to the this reference

Implicit Parameters and this

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Implicit Parameters and this

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Some programmers feel that manually inserting the this
reference before every instance variable reference makes the
code clearer:

public BankAccount(double initialBalance)
{
 this.balance = initialBalance;
}

Implicit Parameters and this

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  A method call without an implicit parameter is applied to the
same object

•  Example:
public class BankAccount
{
 . . .
 public void monthlyFee()
 {
 withdraw(10); // Withdraw $10 from this account
 }
}

•  The implicit parameter of the withdraw method is the (invisible)
implicit parameter of the monthlyFee method

Implicit Parameters and this

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  You can use the this reference to make the method easier to
read:
public class BankAccount
{
 . . .
 public void monthlyFee()
 {
 this.withdraw(10); // Withdraw $10 from this account
 }
}

Implicit Parameters and this

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How many implicit and explicit parameters does the withdraw
method of the BankAccount class have, and what are their names
and types?

 Answer: One implicit parameter, called this, of type
 BankAccount, and one explicit parameter, called amount, of
 type double.

Self Check 3.20

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

In the deposit method, what is the meaning of this.amount? Or, if
the expression has no meaning, why not?

 Answer: It is not a legal expression. this is of type BankAccount
 and the BankAccount class has no variable named amount. s

Self Check 3.21

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How many implicit and explicit parameters does the main method
of the BankAccountTester class have, and what are they called?

 Answer: No implicit parameter – the main method is not ivoked
on any object – and one explicit parameter, called args.

Self Check 3.22

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Good practice: Make a class for each graphical shape

 public class Car
 {
 public Car(int x, int y)
 {
 // Remember position
 . . .
 }
 public void draw(Graphics2D g2)
 {
 // Drawing instructions
 . . .
 }
 }

Shape Classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

•  Draw two cars: one in top-left corner of window, and another in
 the bottom right

•  Compute bottom right position, inside paintComponent method:
 int x = getWidth() - 60;

 int y = getHeight() - 30;
 Car car2 = new Car(x, y);

•  getWidth and getHeight are applied to object that
 executes paintComponent

•  If window is resized paintComponent is called and car position
 recomputed

Continued

Drawing Cars

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Drawing Cars (The Goal)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Plan Complex Shapes on Graph Paper

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Car: responsible for drawing a single car
•  Two objects of this class are constructed, one for each car

• CarComponent: displays the drawing

• CarViewer: shows a frame that contains two CarComponent‘s

Classes of Car Drawing Program

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 import java.awt.Graphics2D;
 import java.awt.Rectangle;
 import java.awt.geom.Ellipse2D;
 import java.awt.geom.Line2D;
 import java.awt.geom.Point2D;

 /**
 A car shape that can be positioned anywhere on the screen.
 */
 public class Car
 {
 private int xLeft;
 private int yTop;

 /**
 Constructs a car with a given top left corner.
 @param x the x coordinate of the top left corner
 @param y the y coordinate of the top left corner
 */
 public Car(int x, int y)
 {
 xLeft = x;
 yTop = y;
 }

Continued

ch03/car/Car.java

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 /**
 Draws the car.
 @param g2 the graphics context
 */
 public void draw(Graphics2D g2)
 {
 Rectangle body
 = new Rectangle(xLeft, yTop + 10, 60, 10);
 Ellipse2D.Double frontTire
 = new Ellipse2D.Double(xLeft + 10, yTop + 20, 10, 10);
 Ellipse2D.Double rearTire
 = new Ellipse2D.Double(xLeft + 40, yTop + 20, 10, 10);

 // The bottom of the front windshield
 Point2D.Double r1
 = new Point2D.Double(xLeft + 10, yTop + 10);
 // The front of the roof
 Point2D.Double r2
 = new Point2D.Double(xLeft + 20, yTop);
 // The rear of the roof
 Point2D.Double r3
 = new Point2D.Double(xLeft + 40, yTop);

Continued

ch03/car/Car.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 // The bottom of the rear windshield
 Point2D.Double r4
 = new Point2D.Double(xLeft + 50, yTop + 10);

 Line2D.Double frontWindshield
 = new Line2D.Double(r1, r2);
 Line2D.Double roofTop
 = new Line2D.Double(r2, r3);
 Line2D.Double rearWindshield
 = new Line2D.Double(r3, r4);

 g2.draw(body);
 g2.draw(frontTire);
 g2.draw(rearTire);
 g2.draw(frontWindshield);
 g2.draw(roofTop);
 g2.draw(rearWindshield);
 }
 }

ch03/car/Car.java (cont.)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 import java.awt.Graphics;
 import java.awt.Graphics2D;
 import javax.swing.JComponent;

 /**
 This component draws two car shapes.
 */
 public class CarComponent extends JComponent
 {
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;

 Car car1 = new Car(0, 0);

 int x = getWidth() - 60;
 int y = getHeight() - 30;

 Car car2 = new Car(x, y);

 car1.draw(g2);
 car2.draw(g2);
 }
 }

ch03/car/CarComponent.java

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

 import javax.swing.JFrame;

 public class CarViewer
 {
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();

 frame.setSize(300, 400);
 frame.setTitle("Two cars");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 CarComponent component = new CarComponent();
 frame.add(component);

 frame.setVisible(true);
 }
 }

ch03/car/CarViewer.java

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Which class needs to be modified to have the two cars positioned
next to each other?

 Answer: CarComponent

Self Check 3.23

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Which class needs to be modified to have the car tires painted in
black, and what modification do you need to make?

 Answer: In the draw method of the Car class, call

 g2.fill(frontTire);
 g2.fill(rearTire);

Self Check 3.24

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

How do you make the cars twice as big?

 Answer: Double all measurements in the draw method of the
 Car class.

Self Check 3.25

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Rectangle leftRectangle = new Rectangle(100, 100, 30, 60);
Rectangle rightRectangle = new Rectangle(160, 100, 30, 60);
Line2D.Double topLine = new Line2D.Double(130, 100, 160, 100);
Line2D.Double bottomLine = new Line2D.Double(130, 160, 160, 160);

Drawing Graphical Shapes

