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•  To become familiar with the process of implementing classes  

•  To be able to implement simple methods  

•  To understand the purpose and use of constructors  

•  To understand how to access instance variables and local 
variables  

•  To be able to write javadoc comments  

G To implement classes for drawing graphical shapes  

Chapter Goals 



Key Concepts 

•  The Elements of a Java Class Declaration 

•  Modeling Objects Using Classes 

•  Separating the the API (WHAT) from the 
Implementation (HOW) 
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Anatomy of a Class Declaration 
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   public class <NAME> { 
 
   //Private instance variables 
 
 //Constructors 

 
 //Public Getters and other Accessor Instance Methods 

 
 //Public Setters and other Modifier Instance Methods 

 
 //Private Instance Methods 

 
} 
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•  Example: tally counter  

•  Simulator statements:  
Counter tally = new Counter(); 
tally.count(); 
tally.count(); 
int result = tally.getValue(); // Sets result to 2 

•  Each counter needs to store a variable that keeps track of how 
many times the counter has been advanced 

Instance Variables 
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•  Instance variables store the data of an object 

•  Instance of a class: an object of the class 

•  The class declaration specifies the instance variables:  
public class Counter 
{ 
   private int value; 
   … 
}   

Instance Variables 
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•  An instance variable declaration consists of the following parts: 

•  access specifier (such as public) 

•  type of variable (such as int) 

•  name of variable (such as value) 

•  Each object of a class has its own set of instance variables 

•  You should declare all instance variables as private 

Instance Variables 
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Instance Variables 
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Syntax 3.1 Instance Variable Declaration 
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Accessing Instance Variables 

•  The count method advances the counter value by 1: 

public void count() 
{ 
   value = value + 1; 
} 

•  The getValue method returns the current value: 

public int getValue() 
{ 
   return value; 
} 

•  Private instance variables can only be accessed by methods of 
the same class 
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The Complete Counter Class 

public class Counter 
{ 
   // private instance variables 
 private int value; 

 
   // Constructors  
 public Counter()  

   { 
      value= 0; 
   } 
 
   public void count() {  
   { 
      value = value + 1; 
   } 
 public int getValue() {  
    return value;  
 } 

} 
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Supply the body of a method public void reset() that 
resets the counter back to zero.  

   Answer: 
public void reset() 
{ 
   value = 0; 
} 

 

Self Check 3.1 
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Suppose you use a class Clock with private instance variables 
hours and minutes. How can you access these variables in 
your program?  

   Answer: You can only access them by invoking the methods of 
the Clock class. 
 

Self Check 3.2 
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•  Encapsulation is the process of hiding object data and 
providing methods for data access 

•  To encapsulate data, declare instance variables as private 
and declare public methods that access the variables 

•  Encapsulation allows a programmer to use a class without 
having to know its implementation 

•  Information hiding makes it simpler for the implementer of a 
class to change implementations without affecting users of the 
API 

Encapsulation:  
Separation of API from Its Implementation 

Every Problem in Computer Science can be Solved … 
   by Another Level of Indirection 

-David John Wheeler 
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Syntax 3.2 Class Declaration 
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Consider the Counter  class. A counter’s value starts at 0 and is 
advanced by the count method, so it should never be negative. 
Suppose you found a negative value variable during testing. 
Where would you look for the error?  

   Answer: In one of the methods of the Counter  class. 

Self Check 3.3 
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In Chapters 1 and 2, you used System.out as a black box to 
cause output to appear on the screen. Who designed and 
implemented System.out?  

   Answer: The programmers who designed and implemented 
the Java library. 

Self Check 3.4 
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Suppose you are working in a company that produces personal 
finance software. You are asked to design and implement a class 
for representing bank accounts. Who will be the users of your 
class?  

   Answer: Other programmers who work on the personal finance 
application. 

Self Check 3.5 
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Behavior of bank account (abstraction):  
•  deposit money  
•  withdraw money  
•  get balance  

Specifying the Public Interface of a Class 
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•  Methods of BankAccount class:  
• deposit  
• withdraw  
• getBalance  

•  We want to support method calls such as the following:  
harrysChecking.deposit(2000);  
harrysChecking.withdraw(500); 
System.out.println(harrysChecking.getBalance()); 

Specifying the Public Interface of a Class: Methods 
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•  A constructor initializes the instance variables  

•  Constructor name = class name 
  public BankAccount() 
 { 
    // body--filled in later 
 }  

•  Constructor body is executed when new object is created  

•  Statements in constructor body will set the internal data of the 
object that is being constructed  

•  All constructors of a class have the same name  

•  Compiler can tell constructors apart because they take different 
parameters  

Specifying the Public Interface of a Class: Constructor 
Declaration 
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Parts of a Method Declaration 
•  access specifier (such as public) 
•  return type (such as String or void)  
•  method name (such as deposit)  
•  list of parameters (double amount for deposit)  
•  method body in { }  

Examples:  
• public void deposit(double amount) { . . . }  
• public void withdraw(double amount) { . . . }  
• public double getBalance() { . . . }  

 

Specifying the Public Interface of a Class: Method 
Declaration 
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•  access specifier (such as public)  

•  return type (such as void or double)  

•  method name (such as deposit)  

•  list of parameter variables (such as double amount) 

Examples:  
• public void deposit(double amount)  
• public void withdraw(double amount)  
• public double getBalance()  

 

Specifying the Public Interface of a Class: Method Header 
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The public constructors and methods of a class form the public 
interface of the class:  
 

public class BankAccount  
{ 
   // private instance variables--filled in later 
 
   // Constructors  
 public BankAccount()  

   { 
      // body--filled in later  
   } 
 
   public BankAccount(double initialBalance)  
   { 
      // body--filled in later  
   } Continued 

BankAccount Public Interface 
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   // Public Instance Methods  
   public void deposit(double amount)  
   { 
      // body--filled in later  
   } 
   public void withdraw(double amount)  
   { 
      // body--filled in later  
   } 
   public double getBalance()  
   { 
      // body--filled in later  
   }  
} 

BankAccount Public Interface (cont.) 
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How can you use the methods of the public interface to empty the 
harrysChecking bank account?  

 Answer:  
 harrysChecking.withdraw(harrysChecking.getBalance())  

Self Check 3.6 
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What is wrong with this sequence of statements? 
BankAccount harrysChecking = new BankAccount(10000); 
System.out.println(harrysChecking.withdraw(500));  

 Answer: The withdraw method has return type void. It 
doesn’t return a value. Use the getBalance method to obtain 
the balance after the withdrawal.  

Self Check 3.7 
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Suppose you want a more powerful bank account abstraction that 
keeps track of an account number in addition to the balance. How 
would you change the public interface to accommodate this 
enhancement?  

 Answer: Add an accountNumber parameter to the 
constructors, and add a getAccountNumber method. There is 
no need for a setAccountNumber method – the account number 
never changes after construction.  

Self Check 3.8 
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/**  
   Withdraws money from the bank account. 
   @param amount the amount to withdraw  
*/  
public void withdraw(double amount)  
{ 
   //implementation filled in later  
} 
/**  
   Gets the current balance of the bank account.  
   @return the current balance  
*/  
public double getBalance() 
{ 
   //implementation filled in later  
}  

Commenting the Public Interface 
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/**  
   A bank account has a balance that can be changed by 
   deposits and withdrawals.  
*/  
public class BankAccount  
{ 
   . . .  
}  

•  Provide documentation comments for  
•  every class  
•  every method  
•  every parameter  
•  every return value  

Class Comment 
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Javadoc Method Summary 
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Javadoc Method Detail  
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Provide documentation comments for the Counter class of 
Section 3.1.  

 Answer:  
/** 
   This class models a tally counter. 
*/ 
public class Counter 
{ 
   private int value; 
   /** 
      Gets the current value of this counter. 
      @return the current value 
   */ 
   public int getValue() 
   { 
      return value; 
   } 

Self Check 3.9 

Continued 
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   /** 
      Advances the value of this counter by 1. 
   */ 
   public void count() 
   { 
      value = value + 1; 
   } 
} 

Self Check 3.9 (cont.) 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Suppose we enhance the BankAccount class so that each account 
has an account number. Supply a documentation comment for the 
constructor  
public BankAccount(int accountNumber, double initialBalance)  

 Answer:  
/**  
   Constructs a new bank account with a given initial balance.  
  @param accountNumber the account number for this account  
  @param initialBalance the initial balance for this account  
*/ 

Self Check 3.10 
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Why is the following documentation comment questionable?  
/**  
   Each account has an account number.  
   @return the account number of this account  
*/ 
public int getAccountNumber()  

   Answer: The first sentence of the method description should  
   describe the method – it is displayed in isolation in the summary  
   table.  

Self Check 3.11 
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•  Constructors contain instructions to initialize the instance 
variables of an object:  

 public BankAccount()  
 { 
    balance = 0;  
 } 
 
 public BankAccount(double initialBalance) 
 { 
    balance = initialBalance; 
 } 

Implementing Constructors 
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•  Statement: 

BankAccount harrysChecking = new BankAccount(1000);  

•  Create a new object of type BankAccount   

•  Call the second constructor (because a construction parameter is 
supplied in the constructor  call)   

•  Set the parameter variable initialBalance to 1000  

•  Set the balance instance variable of the newly created object to 
initialBalance  

•  Return an object reference, that is, the memory location of the object, as 
the value of the new expression  

•  Store that object reference in the harrysChecking variable  

Constructor Call Example 
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Syntax 3.3 Method Declaration 
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• deposit method:  
  public void deposit(double amount)  
  {  
     balance = balance + amount;  
  } 

Implementing Methods 
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•  Statement: 

 harrysChecking.deposit(500);  

•  Set the parameter variable amount to 500  

•  Fetch the balance variable of the object whose location is stored in 
harrysChecking  

•  Add the value of amount to balance  

•  Store the sum in the balance instance variable, overwriting the old 
value  

Method Call Example 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

• public void withdraw(double amount)  
  {  
     balance = balance - amount;  
  }  

• public double getBalance()  
  { 
     return balance;  
  } 

Implementing Methods 
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     /** 
        A bank account has a balance that can be changed by  
        deposits and withdrawals. 
     */ 
     public class BankAccount 
     {   
        private double balance; 
      
        /** 
           Constructs a bank account with a zero balance. 
        */ 
        public BankAccount() 
        {    
           balance = 0; 
        } 
      
        /** 
           Constructs a bank account with a given balance. 
           @param initialBalance the initial balance 
        */ 
        public BankAccount(double initialBalance) 
        {    
           balance = initialBalance; 
        } 

Continued 

The Complete Bank Account Class Declaration 
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        /** 
           Deposits money into the bank account. 
           @param amount the amount to deposit 
        */ 
        public void deposit(double amount) 
        {   
           balance = balance + amount; 
        } 

 /** 
           Withdraws money from the bank account. 
           @param amount the amount to withdraw 
        */ 
        public void withdraw(double amount) 
        {    
           balance = balance - amount; 
        } 
    

Continued 

The Complete Bank Account Class Declaration 
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        /** 
           Gets the current balance of the bank account. 
           @return the current balance 
        */ 
        public double getBalance() 
        {    
           return balance; 
        } 
     } 

The Complete Bank Account Class Declaration 
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Suppose we modify the BankAccount class so that each bank 
account has an account number. How does this change affect the 
instance variables?  

 Answer:  
An instance variable 

private int accountNumber; 

needs to be added to the class. 

Self Check 3.12 
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Why does the following code not succeed in robbing mom’s bank 
account? 

public class BankRobber 
{ 
   public static void main(String[] args) 
   { 
      BankAccount momsSavings = new BankAccount(1000); 
      momsSavings.balance = 0; 
   } 
} 

 Answer: Because the balance instance variable is 
accessed from the main method of BankRobber. The compiler 
will report an error because balance has private access in 
BankAccount. 

Self Check 3.13 
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The Rectangle class has four instance variables: x, y, width, 
and height. Give a possible implementation of the getWidth 
method.  

 Answer: 
public int getWidth() 
{ 
   return width; 
} 

Self Check 3.14 
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Give a possible implementation of the translate method of the 
Rectangle class.  

 Answer: There is more than one correct answer. One 
possible implementation is as follows: 

public void translate(int dx, int dy) 
{ 
   int newx = x + dx; 
   x = newx; 
   int newy = y + dy; 
   y = newy; 
} 

Self Check 3.15 
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•  Unit test: Verifies that a class works correctly in isolation, 
outside a complete program  

•  To test a class, use an environment for interactive testing, or 
write a tester class  

•  Tester class: A class with a main method that contains 
statements to test another class  

•  Typically carries out the following steps:  
1. Construct one or more objects of the class that is being tested  
2.  Invoke one or more methods  
3. Print out one or more results 
4. Print the expected results 

Continued 

Unit Testing 
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    /** 
       A class to test the BankAccount class. 
    */ 
    public class BankAccountTester 
    { 
       /** 
          Tests the methods of the BankAccount class. 
          @param args not used 
       */ 
      public static void main(String[] args) 
      { 
         BankAccount harrysChecking = new BankAccount(); 
         harrysChecking.deposit(2000); 
         harrysChecking.withdraw(500); 
         System.out.println(harrysChecking.getBalance()); 
         System.out.println("Expected: 1500");       
      } 
   } 

Program Run:   
1500  
Expected: 1500 

ch03/account/BankAccountTester.java 
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•  Details for building the program vary. In most environments, you 
need to carry out these steps:  
1. Make a new subfolder for your program  
2. Make two files, one for each class  
3. Compile both files  
4. Run the test program  

Unit Testing (cont.) 
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Testing With BlueJ 
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When you run the BankAccountTester program, how many objects 
of class BankAccount are constructed? How many objects of type 
BankAccountTester?  

   Answer: One BankAccount object, no BankAccountTester  
   object. The purpose of the BankAccountTester class is  
   merely to hold the main method.  

Self Check 3.16 
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Why is the BankAccountTester class unnecessary in development 
environments that allow interactive testing, such as BlueJ?  

   Answer: In those environments, you can issue interactive  
   commands to construct BankAccount objects, invoke methods,  
   and display their return values. 

Self Check 3.17 
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•  Local and parameter variables belong to a method 
• When a method or constructor runs, its local and parameter variables 
come to life  

• When the method or constructor exits, they are removed immediately   

•  Instance variables belongs to an objects, not methods 
• When an object is constructed, its instance variables are created  

• The instance variables stay alive until no method uses the object any 
longer  

•   Instance variables are initialized to a default value, but you 
must initialize local variables  
 

Local Variables vs. Instance Variables 
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•  In Java, the garbage collector periodically reclaims objects 
when they are no longer used  

•  Instance variables are initialized to a default value, but you 
must initialize local variables  

Local Variables 
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Animation 3.1: Lifetime of Variables 
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What do local variables and parameter variables have in 
common? In which essential aspect do they differ?  

   Answer: Variables of both categories belong to methods – they  
   come alive when the method is called, and they die when the  
   method exits. They differ in their initialization. Parameter  
   variables are initialized with the call values; local variables must  
   be explicitly initialized.  

Self Check 3.18 
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Why was it necessary to introduce the local variable change in 
the giveChange method? That is, why didn’t the method simply 
end with the statement 

return payment - purchase;  

   Answer: After computing the change due, payment and 
purchase were set to zero. If the method returned payment - 
purchase, it would always return zero. 

Self Check 3.19 
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•  The implicit parameter of a method is the object on which the 
method is invoked  

• public void deposit(double amount)  
  { 
     balance = balance + amount;  
  }  

•  In the call 

momsSavings.deposit(500) 

The implicit parameter is momsSavings and the explicit 
parameter is 500 

•  When you refer to an instance variable inside a method, it 
means the instance variable of the implicit parameter 

  

Accessing Target Object Via Implicit Parameter 
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•  The this reference denotes the implicit parameter  

• balance = balance + amount; 

 actually means 

 this.balance = this.balance + amount; 

•  When you refer to an instance variable in a method, the compiler 
automatically applies it to the this reference 

Implicit Parameters and this 
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Implicit Parameters and this 
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•  Some programmers feel that manually inserting the this 
reference before every instance variable reference makes the 
code clearer: 

public BankAccount(double initialBalance) 
{ 
   this.balance = initialBalance; 
} 

Implicit Parameters and this 
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•  A method call without an implicit parameter is applied to the 
same object 

•  Example: 
public class BankAccount 
{ 
   . . . 
   public void monthlyFee() 
   { 
      withdraw(10); // Withdraw $10 from this account 
   } 
} 

•  The implicit parameter of the withdraw method is the (invisible) 
implicit parameter of the monthlyFee method 

 

Implicit Parameters and this 
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•  You can use the this reference to make the method easier to 
read: 
public class BankAccount 
{ 
   . . . 
   public void monthlyFee() 
   { 
      this.withdraw(10); // Withdraw $10 from this account 
   } 
} 

Implicit Parameters and this 
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How many implicit and explicit parameters does the withdraw 
method of the BankAccount class have, and what are their names 
and types?  

   Answer: One implicit parameter, called this, of type  
   BankAccount, and one explicit parameter, called amount, of  
   type double.  

Self Check 3.20 
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In the deposit method, what is the meaning of this.amount? Or, if 
the expression has no meaning, why not?  

   Answer: It is not a legal expression. this is of type BankAccount  
   and the BankAccount class has no variable named amount. s 

Self Check 3.21 
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How many implicit and explicit parameters does the main method 
of the BankAccountTester class have, and what are they called?  

   Answer: No implicit parameter – the main method is not ivoked 
on any object – and one explicit parameter, called args.  

Self Check 3.22 
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•  Good practice: Make a class for each graphical shape  
 

 public class Car  
 { 
    public Car(int x, int y)  
    { 
       // Remember position  
       . . .  
    } 
       public void draw(Graphics2D g2)  
    { 
       // Drawing instructions  
       . . .  
    } 
 } 

Shape Classes 
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•   Draw two cars: one in top-left corner of window, and another in 
 the bottom right  

•   Compute bottom right position, inside paintComponent method: 
  int x = getWidth() - 60;  

 int y = getHeight() - 30;  
  Car car2 = new Car(x, y);  

•   getWidth and getHeight are applied to object that  
 executes paintComponent  

•   If window is resized paintComponent is called and car position 
 recomputed 

Continued 

Drawing Cars 
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Drawing Cars (The Goal) 
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Plan Complex Shapes on Graph Paper 
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• Car: responsible for drawing a single car  
•  Two objects of this class are constructed, one for each car  

• CarComponent: displays the drawing  

• CarViewer: shows a frame that contains two CarComponent‘s 

Classes of Car Drawing Program 
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    import java.awt.Graphics2D; 
    import java.awt.Rectangle; 
    import java.awt.geom.Ellipse2D; 
    import java.awt.geom.Line2D; 
    import java.awt.geom.Point2D; 
     
    /** 
       A car shape that can be positioned anywhere on the screen. 
    */ 
   public class Car 
   { 
      private int xLeft; 
      private int yTop; 
    
      /** 
         Constructs a car with a given top left corner. 
         @param x the x coordinate of the top left corner 
         @param y the y coordinate of the top left corner 
      */ 
      public Car(int x, int y) 
      { 
         xLeft = x; 
         yTop = y; 
      } 

Continued 

ch03/car/Car.java 
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      /** 
         Draws the car. 
         @param g2 the graphics context 
      */ 
      public void draw(Graphics2D g2) 
      { 
         Rectangle body  
               = new Rectangle(xLeft, yTop + 10, 60, 10);       
         Ellipse2D.Double frontTire  
               = new Ellipse2D.Double(xLeft + 10, yTop + 20, 10, 10); 
         Ellipse2D.Double rearTire 
               = new Ellipse2D.Double(xLeft + 40, yTop + 20, 10, 10); 
    
         // The bottom of the front windshield 
         Point2D.Double r1  
               = new Point2D.Double(xLeft + 10, yTop + 10); 
         // The front of the roof 
         Point2D.Double r2  
               = new Point2D.Double(xLeft + 20, yTop); 
         // The rear of the roof 
         Point2D.Double r3  
               = new Point2D.Double(xLeft + 40, yTop); 

Continued 

ch03/car/Car.java  (cont.) 
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         // The bottom of the rear windshield 
         Point2D.Double r4  
               = new Point2D.Double(xLeft + 50, yTop + 10); 
    
         Line2D.Double frontWindshield  
               = new Line2D.Double(r1, r2); 
         Line2D.Double roofTop  
               = new Line2D.Double(r2, r3); 
         Line2D.Double rearWindshield 
               = new Line2D.Double(r3, r4); 
       
         g2.draw(body); 
         g2.draw(frontTire); 
         g2.draw(rearTire); 
         g2.draw(frontWindshield);       
         g2.draw(roofTop);       
         g2.draw(rearWindshield);       
      } 
   } 

ch03/car/Car.java  (cont.) 
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    import java.awt.Graphics; 
    import java.awt.Graphics2D; 
    import javax.swing.JComponent; 
     
    /** 
       This component draws two car shapes. 
    */ 
    public class CarComponent extends JComponent 
    {   
      public void paintComponent(Graphics g) 
      {   
         Graphics2D g2 = (Graphics2D) g; 
    
         Car car1 = new Car(0, 0); 
          
         int x = getWidth() - 60; 
         int y = getHeight() - 30; 
    
         Car car2 = new Car(x, y); 
    
         car1.draw(g2); 
         car2.draw(g2);       
      } 
   } 

ch03/car/CarComponent.java 
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    import javax.swing.JFrame; 
     
    public class CarViewer 
    { 
       public static void main(String[] args) 
       { 
          JFrame frame = new JFrame(); 
     
          frame.setSize(300, 400); 
          frame.setTitle("Two cars"); 
          frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
     
          CarComponent component = new CarComponent(); 
          frame.add(component); 
     
          frame.setVisible(true); 
       } 
    } 

ch03/car/CarViewer.java 
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Which class needs to be modified to have the two cars positioned 
next to each other?  

   Answer: CarComponent  

Self Check 3.23 
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Which class needs to be modified to have the car tires painted in 
black, and what modification do you need to make?  

 Answer: In the draw method of the Car class, call 

 g2.fill(frontTire); 
 g2.fill(rearTire); 

Self Check 3.24 
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How do you make the cars twice as big?  

   Answer: Double all measurements in the draw method of the  
   Car class.  

Self Check 3.25 



Big Java by Cay Horstmann 
Copyright © 2009 by John Wiley & Sons.  All rights reserved. 

Rectangle leftRectangle = new Rectangle(100, 100, 30, 60); 
Rectangle rightRectangle = new Rectangle(160, 100, 30, 60);  
Line2D.Double topLine = new Line2D.Double(130, 100, 160, 100);  
Line2D.Double bottomLine = new Line2D.Double(130, 160, 160, 160); 

Drawing Graphical Shapes 


