[image: image1.png]

Department of Electrical and Computer Engineering

University of Puerto Rico

Mayagüez Campus

ICOM 6005 – Database Management Systems Design
Spring 2005
Project #1: Implementation of Selection and Projections Operators
Due Date: 11:59 PM, February 17, 2006
Objectives

1. Understand the implementation of a relational schema, where clause, selection and projections.

2. Gain experience with low-level I/O routines, object-oriented design, and data abstraction.

Overview

In this project, you will work with several of the modules that typically handle the execution of the single-table selection and projection operations in a DBMS. Specifically, you will implement the code that:

· Reads schema information from a file.

· Generates a structure to hold a tuple that is based on the schema information.

· Reads tuples from a data file and stores them in an associated structure for that of tuple.
· Evaluates a selection condition on a tuple.

· Projects one or more columns from a tuple, after a selection operation (if any) has been passed by that tuple.

· Performs some maintenance and clean up tasks related with the executions of the relational operations.

Rather than building all this code from scratch, you will be given several Java packages that you will use as the building blocks to implement your solution.

Getting the project
The project can be obtained from icarus via anonymous cvs.

Server: icarus.ece.uprm.edu

Path: /home/icom6005/cvsroot

User: anonymous

Connection: pserver
Port: 3005
All information related to classes can be found in the Javadocs inside directory /doc. Alternately go to address http://icarus.ece.uprm.edu/icom6005/doc
Reading the relational schema
The schema for a given relation will be stored in a text file whose name will consist of the relation name and the extension .sf . For example, if the relation is called students, then the schema file will be called students.sf .
Metadata is stored in a text file named students.sf inside directory /database/university/schema. Data is stored in a text file named students.data inside directory /database/university/data. The current data is a simple table named students inside the database university. The schema of the students table is students(id (int), sname (string), sage (int), saddr (string)). The schema file is of the form:
cardinality

file implementation

number of columns

(for each column)

column name | data type name | size in bytes.

More information can be found in /info/schema.txt and in /database/university/schema/student.sf files. The classes used to hold the metadata can be found in the edu.uprm.admg.cafe.metadata package. Classes that manage IO operations over files are found in edu.uprm.admg.cafe.io. The SimpleTableFile.java is the class that manages the simple file students.data file. This class is fully implemented.

As part of your tasks you will write code that takes care of collecting this information and storing them in the appropriate data structures. The code for representing these metadata can be built from the classes in the package edu.umd.umiacs.mocha.metadata. There you will find classes that can be used to represent information about columns, types, relations, etc. The relevant classes are TableMD, ColumnMD, and DataTypeMD, among others.
Representing schemas in Queries

The classes in the package edu.uprm.admg.cafe.metadata are used to represent the information about the schema of the relation. But, you also need to represent the information about the attributes used in a query. That is, you need to represent the schema information associated with a given query. For this purpose, you will use the classes in the package edu.uprm.admg.cafe.schema. These classes are used to represent the attributes to be managed for a given query. The fundamental classes you need to use are:
· Attributes – the superclass of all the classes that represent attributes used in a query.
· BaseAttribute – the attributes that exist in relation.

· ValueAttribure – constant number and strings that appear in where clase.

· ProjectionAttribute – the attributes to be projected. These correspond to base attributes that will be projected.

· Tuple – object representing a tuple. This tuple can be formed from base attributes, value attributes, or projection attributes.
 In your program, you first read the schema for the relation using the classes in edu.uprm.admg.cafe.metadata. Then, you use the type information in these classes to build the schema for the query using the classes in package edu.uprm.admg.cafe.schema.
Creating Tuples

Using, the schema information and the Metadata information you then need to create tuples that follow that schema. In addition, when you are given a list of projections to be performed, you need to create tuples that follow the scheme of these projections. The structure of a tuples is defined in class Tuple.java, which is contained in the package edu.umd.umiacs.mocha.schema. Basically, a tuples holds an array of objects, which represent the columns (attributes) in the tuple. Each column is an object of type MDObject, which is defined in package edu.umd.umiacs.mocha.tyope This is the superclass of the type system, and from this class we have classes for integers (MIInteger), float (MIFloat), strings (MIString), and so on. All the classes for data types are found in the package edu.umd.umiacs.mocha.type.
Usually you will have three kinds of tuples: base tuple, working tuple and projected tuple. The base tuple corresponds to a tuple formed by reading a tuple from the database. The schema for this tuple is given in an array of base attributes objects. The working tuple is formed from the tuple read and a series constant values that appear in the where clause of the query. The schema for the working tuples is derived from the base attributes, followed by the value attributes. The working tuple is the one evaluated by the where clause of the query. The projected tuple is the tuple resulting from projecting a working tuple that has passed the where clause. The constructur for each projected attributes receives as one its parameters the index of the attribute in the working tuple that is has to project.
Evaluating the where clause

The package edu.uprm.admg.cafe.predicate contains the code that evaluates predicates (>, < , >=, <=, ==, <>), and logical expressions (AND, OR, NOT). The classes for all these inherit from class LogicalExpression. For the predicates, the arguments for their constructor are the indicies of the attributes in the working tuple that need to be used to evaluate the predicate. For the expression AND, OR, NOT, the arguments are the left-hand and right-hand (except for NOT) expressions needed to evaluate the expression.
Query Plan Object

For each of the queries being supported, you will write a query plan object that contains:

· Target relation name

· Base attributes needed

· Value attributes needed

· Projected attributes needed

· Logical expression for the where clause

The query plan object can be used by an iterator to read table, evaluate the where clause, and project the necessary attributes. For each query you will need a different query plan object.
Generate the query plan using the parse tree generated by the SQLParser and the metadata read from the file. Parser classes are in the edu.uprm.admg.cafe.sqlparser and edu.uprm.admg.cafe.sqlparser.ast packages. The class ParserTest.java in package edu.uprm.admg.cafe.sqlparser can be used to see the pretty-print output of the parse tree. Plans that MUST be generated in this phase are SELECTION and PROJECTION. Metadata must be fed to the SimpleTableFile class for the SCAN part of the execution plan. The SCAN operation is fully implemented. Plan definitions (interfaces and abstract classes) are found in package edu.uprm.admg.cafe.plan.
Select Project Iterator
Implement the iterators for the SELECTION and PROJECTION. Must convert the generated plans into their corresponding iterators. The SCAN iterator of the simple file is fully implemented and accessed through the SimpleTableFile class. Iterator definitions (interfaces and abstract classes) are found in package edu.uprm.admg.cafe.iterator. Iterators must be pipelined and execution must be without temporary tables.
Definitions (interfaces and abstract) classes needed for plan generation and conversion to iterators are found in package edu.uprm.admg.cafe.optimizer
Objects related to plans and iterators (e.g. that MUST be used at the moment of plan generation and plan execution) are found in packages edu.uprm.admg.cafe.schema and edu.uprm.admg.cafe.type
Other classes related to plans and iterators are found in edu.uprm.admg.cafe.function.
Utility classes are found in package edu.uprm.admg.cafe.util.
You will write iterator classes that follow the iterator interface from the Volcano. This iterator will have four public method:

· Constructor – creates a new iterator from a query plan object.
· open() – opens the file with the relational data
· next() – reads a one of tuples, making it into a base tuple, then creates a working tuple, evaluates the where the clause, and projects the working tuple into a projected tuple. The projected tuple is inserted into a LinkedList. Next might repeat this process until the linked-list has N tuples (N should be a parameter passed to the constructor to control how many tuples next() returns each time), or no more tuples can be read. Next returns the Linked List wit the tuples.
· close() – closes the file for the relation and de-allocates any other data structure being in use.
PROJECT DUE DATE: 11:59 PM – February 17 , 2006.
� EMBED MSDraw.1.01 ���

[image: image2.png]

_1057345867

