
ICOM 4215 Project 1 Fall 2010

Processor Simulator

Today: October 22, 2010

Due date: November 12, 2010

Points: 100 points (Penalties: Next day: -10 points, Two days late: -25 points, Three days late: -40

points, Four days late or more: not accepted)

Group project – two students per group

Submission:

• Via oral exam, aka “Happy Hour”

• Report, via email

Project
In order to understand how a processor works and the different aspects taken into consideration

when designing a processor, we are requesting that you design a simulator for a simple

processor. The following sections describe the processor.

General Processor Description: RISC AR
The RISC 100AR is a processor designed by your professor, taking the ideas from the Simple Risc

Processor, from the Jordan and Heuring textbook, a processor designed by Manuel Jimenez, Sunil

Vaidya, Bradley Vansant, and Dave Dorner for the EE 813 graduate course at Michigan State

University, and the processor designed by Adem Kader and Mustafa Paksoy for the E25 :

COMPUTER ARCHITECTURE course at Swathmore University.

Processor Features:

� 8-bit internal data bus
� Internal 256-word 8 bit wide program memory
� 8 byte register file
� On chip 4 bits hardware multiplier providing 8 bit results.
� 2 external I/O pins
� RISC instruction set: 20 instructions

o 5 arithmetic
o 3 logical
o 5 data transfer
o 6 control flow instructions
o 1 machine control

Processor Block Diagram

Memory

Registers

ALU Mult

Acc

PC

IR

Control
Unit

I/O

SR

Figure 1: Block diagram of the RISC AR

Memory and Registers

The size of the memory is 256 organized as 256 addresses of 1 byte each.

Figure 2: Visual illustration of the memory of the RISC AR

Internally, the processor has 8 general purpose registers, 8 bits each. The names of the registers

are from R0 to R7.

…

7 0

0

256

7 0

R0

R3

R1

R2

R4

R7

R5

R6

Figure 3: Visual illustration of the general purpose register structure of the RISC AR

The processor has a 8 bit program counter called PC, an 8 bit accumulator called A, and a 16 bit

instruction register called IR. There is a 4-bit status register called SR. The format of the Status

Register is
Z C N O

 where Z is zero, C is Carry, N is negative, and O is overflow. When

instructions are saved into memory, big endian ordering is used.

Four addressing modes are supported by the processor:

a) Implicit

b) Immediate

c) Direct

d) Register indirect

The list below shows the different addressing modes supported and the corresponding instruction

formats for each (see figures 4 to 7).

(a) Implicit addressing: The only operand needed is contained in the accumulator (A)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 bit opcode Don’t care

Figure 4: Instruction format for the Implicit addressing mode

(b) Immediate addressing: The data to be operated is part of the instruction itself.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 bit opcode Immediate Operand

Figure 5: Instruction format for the Immediate addressing mode

(c) Direct: The memory location is indicated within the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 bit opcode Direct AddressReg f

Figure 6: Instruction format for the Direct addressing mode

(c) Register indirect: Register f points to the memory location to be accessed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 bit opcode Don’t careReg f

Figure 7: Instruction format for the Register Indirect addressing mode

Instruction Set

The following table is a summary of the instruction set of the RISC AR. Note that register f refers to

one of the eight general purpose registers.

Table 1: Instruction set of the RISC AR

 Opcode Name

(Mnemonic)

Operands Addressing

Modes

Operation Details

1 00 000 AND A, rf Accumulator,

register f

Direct A � A and rf Logical AND

2 00 001 OR A, rf Accumulator,

register f

Direct A � A or rf Logical OR

3 00 010 ADDC A, rf Accumulator,

register f

Direct A � A + (rf)

+carry

Addition with

carry

4 00 011 MUL A, rf Four least

significant bits of

accumulator ,

four least

significant bits of

register f

Direct A � A *(rf) Multiply

5 00 100 NEG A Accumulator Implicit A � not(A) Two’s

complement

6 00 101 RLC A Accumulator Implicit A � A6..A0

&Cf, Cf �A7

Rotate left

through carry

7 00 110 RRC A Accumulator Implicit A � Cf &

A7..A1, Cf

�A0

Rotate right

through carry

8 00 111 DEC A Accumulator Implicit A � A-1 Decrement

accumulator

9 01 000 LDA rf Accumulator,

register f

Direct A � (rf) Load

accumulator

from register f

10 01 001 STA rf Accumulator,

register f

Direct (rf)� A Store

accumulator to

register f

11 01 010 LDA addr Accumulator Direct A � [addr] Load

accumulator

from memory

location addr

12 01 011 STA addr Accumulator Direct [add]� A Store

accumulator to

memory

location addr

13 01 100 LDI

Immediate

Accumulator Immediate A �

Immediate

Load

accumulator

with

immediate

14 10 000 BRZ Status register Implicit If Z=1, PC

�r7

Branch if Zero

15 10 001 BRC Status register Implicit If C=1, PC

�r7

Branch if Carry

16 10 010 BRN Status register Implicit If N=1, PC

�r7

Branch if

Negative

17 10 011 BRO Status register Implicit If O=1, PC

�r7

Branch if

Overflow

18 10 101 BRA addr PC Direct PC � addr Unconditional

branch

29 11 000 NOP Implicit No operation

20 11 111 STOP PC Implicit Stop execution

Arithmetic instructions use a 2’s complement representation for negative numbers. This format is

also used to compute memory addresses when accessing memory. Register 7 is a special register

that will be used for branching conditions.

Processor Configuration
The processor operates with instructions located in main memory from address 0 to address

127. When the processor starts, it will always do so from location 0 and 1.

The system will also have two devices connected to I/O ports using the following

memory locations:

250-251: 16 bits, input from keyboard
252 – 255: Hex display, each byte will represent one digit

The information coming from the keyboard will be entered at the keyboard of the computer

running the simulation. The hex display will be presented at the computer screen of the

computer running the simulation. The data entered in the keyboard will have the

corresponding ASCII value and the data written to the hex display should have the ASCII code

for the corresponding character. The following figure illustrates a possible configuration of the

graphical user interface for the simulator you will design.

0110011000110100IR

PC 00010111

00110100

10010101

01111100

00110001

11110100

00111101

10110100

00111100

R0
R1
R2
R3
R4
R5
R6
R7

A 11110100

SR 0011

Keybd B

Memory 00: 1236 BAA5
02: 110C A1FF
04: 3451 22C1
06: 1212 2778
08: 9F11 6544
0A: 0000 10C1
0C: 0000 3211
0E: 1111 1011
10: 1818 0000

Display BF12

Figure 8: Possible graphical user interface arrangement

Project requirements

Simulator characteristics

The simulator must simulate all instructions in the instruction set, including all addressing
modes. The simulator will run the instructions located in the main memory, starting with address
zero (PC=0). The contents of memory are changed as a file with instructions is loaded into the
simulator. Your professor will bring a simulation file on the oral exam day. This file will contain
one line per instruction, and it will be represented in HEX characters (4 Hex characters).

The following example illustrates an input file:
2B00

2C00

1B82
6270

The simulator should run in two different modes: run or step. Run mode will allow programs to

run from start to end. Step mode will run one instruction at a time. Please notice that the last

instruction in any file should be stop. The simulator must show the contents of all registers,

program counter, instruction register, and the contents of a section of memory. The directions in

memory should be shown in HEX representation

Your design may use a graphical user interface or a plain text interface. Use any programming

language of your preference.

