
William Stallings

Computer Organization

and Architecture

8th Edition

Chapter 4Chapter 4

Cache Memory

minor modifications by N. Santiago

Characteristics

• Location

• Capacity

• Unit of transfer

• Access method

• Performance• Performance

• Physical type

• Physical characteristics

• Organisation

Location

• CPU

• Internal

• External

Capacity

• Word size

—The natural unit of organisation

• Number of words

—or Bytes

Unit of Transfer

• Internal

—Usually governed by data bus width

• External

—Usually a block which is much larger than a
word

• Addressable unit• Addressable unit

—Smallest location which can be uniquely
addressed

—Word internally

—Cluster on M$ disks

Access Methods (1)

• Sequential

—Start at the beginning and read through in
order

—Access time depends on location of data and
previous location

—e.g. tape—e.g. tape

• Direct

—Individual blocks have unique address

—Access is by jumping to vicinity plus
sequential search

—Access time depends on location and previous
location

—e.g. disk

Access Methods (2)

• Random

—Individual addresses identify locations exactly

—Access time is independent of location or
previous access

—e.g. RAM

• Associative• Associative

—Data is located by a comparison with contents
of a portion of the store

—Access time is independent of location or
previous access

—e.g. cache

Memory Hierarchy

• Registers

—In CPU

• Internal or Main memory

—May include one or more levels of cache

—“RAM”

• External memory

—Backing store

Memory Hierarchy - Diagram

Performance

• Access time

—Time between presenting the address and
getting the valid data

• Memory Cycle time

—Time may be required for the memory to
“recover” before next access“recover” before next access

—Cycle time is access + recovery

• Transfer Rate

—Rate at which data can be moved

Physical Types

• Semiconductor

—RAM

• Magnetic

—Disk & Tape

• Optical• Optical

—CD & DVD

Physical Characteristics

• Decay

• Volatility

• Erasable

• Power consumption

Organisation

• Physical arrangement of bits into words

• Not always obvious

• e.g. interleaved

The Bottom Line

• How much?

—Capacity

• How fast?

—Time is money

• How expensive?• How expensive?

Hierarchy List

• Registers

• L1 Cache

• L2 Cache

• Main memory

• Disk cache• Disk cache

• Disk

• Optical

• Tape

So you want fast?

• It is possible to build a computer which
uses only static RAM (see later)

• This would be very fast

• This would need no cache

—How can you cache cache?

• This would cost a very large amount

Locality of Reference

• During the course of the execution of a
program, memory references tend to
cluster

• e.g. loops

Locality

• Principle of Locality:
—Programs tend to reuse data and instructions near those
they have used recently, or that were recently referenced
themselves.

—Temporal locality: Recently referenced items are likely
to be referenced in the near future.

—Spatial locality: Items with nearby addresses tend to be
referenced close together in time.referenced close together in time.

Locality Example:

• Data

– Reference array elements in succession
(stride-1 reference pattern):

– Reference sum each iteration:

• Instructions

– Reference instructions in sequence:

– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;Spatial locality

Spatial locality
Temporal locality

Temporal locality

Cache

• Small amount of fast memory

• Sits between normal main memory and
CPU

• May be located on CPU chip or module

Cache and Main Memory

Cache/Main Memory Structure

Cache operation – overview

• CPU requests contents of memory location

• Check cache for this data

• If present, get from cache (fast)

• If not present, read required block from
main memory to cachemain memory to cache

• Then deliver from cache to CPU

• Cache includes tags to identify which
block of main memory is in each cache
slot

Cache Read Operation - Flowchart

Cache Design

• Addressing

• Size

• Mapping Function

• Replacement Algorithm

• Write Policy• Write Policy

• Block Size

• Number of Caches

Cache Addressing

• Where does cache sit?

—Between processor and virtual memory management
unit

—Between MMU and main memory

• Logical cache (virtual cache) stores data using
virtual addresses

—Processor accesses cache directly, not thorough physical —Processor accesses cache directly, not thorough physical
cache

—Cache access faster, before MMU address translation

—Virtual addresses use same address space for different
applications

– Must flush cache on each context switch

• Physical cache stores data using main memory
physical addresses

Size does matter

• Cost

—More cache is expensive

• Speed

—More cache is faster (up to a point)

—Checking cache for data takes time

Typical Cache Organization

Comparison of Cache Sizes

Processor Type
Year of

Introduction
L1 cache L2 cache L3 cache

IBM 360/85 Mainframe 1968 16 to 32 KB — —

PDP-11/70 Minicomputer 1975 1 KB — —

VAX 11/780 Minicomputer 1978 16 KB — —

IBM 3033 Mainframe 1978 64 KB — —

IBM 3090 Mainframe 1985 128 to 256 KB — —

Intel 80486 PC 1989 8 KB — —

Pentium PC 1993 8 KB/8 KB 256 to 512 KB —

PowerPC 601 PC 1993 32 KB — —PowerPC 601 PC 1993 32 KB — —

PowerPC 620 PC 1996 32 KB/32 KB — —

PowerPC G4 PC/server 1999 32 KB/32 KB 256 KB to 1 MB 2 MB

IBM S/390 G4 Mainframe 1997 32 KB 256 KB 2 MB

IBM S/390 G6 Mainframe 1999 256 KB 8 MB —

Pentium 4 PC/server 2000 8 KB/8 KB 256 KB —

IBM SP
High-end server/
supercomputer

2000 64 KB/32 KB 8 MB —

CRAY MTAb Supercomputer 2000 8 KB 2 MB —

Itanium PC/server 2001 16 KB/16 KB 96 KB 4 MB

SGI Origin 2001 High-end server 2001 32 KB/32 KB 4 MB —

Itanium 2 PC/server 2002 32 KB 256 KB 6 MB

IBM POWER5 High-end server 2003 64 KB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 KB/64 KB 1MB —

Mapping Function

• Cache of 64kByte

• Cache block of 4 bytes

—i.e. cache is 16k (214) lines of 4 bytes

• 16MBytes main memory

• 24 bit address • 24 bit address

—(224=16M)

Direct Mapping

• Each block of main memory maps to only
one cache line

—i.e. if a block is in cache, it must be in one
specific place

• Address is in two parts

• Least Significant w bits identify unique • Least Significant w bits identify unique
word

• Most Significant s bits specify one
memory block

• The MSBs are split into a cache line field r
and a tag of s-r (most significant)

Direct Mapping

Address Structure

Tag s-r Line or Slot r Word w

8 14 2

• 24 bit address

• 2 bit word identifier (4 byte block)• 2 bit word identifier (4 byte block)

• 22 bit block identifier

— 8 bit tag (=22-14)

— 14 bit slot or line

• No two blocks in the same line have the same Tag field

• Check contents of cache by finding line and checking Tag

Direct Mapping from Cache to Main Memory

Direct Mapping

Cache Line Table

Cache line Main Memory blocks held

0 0, m, 2m, 3m…2s-m

1 1,m+1, 2m+1…2s-m+11 1,m+1, 2m+1…2s-m+1

…

m-1 m-1, 2m-1,3m-1…2s-1

Direct Mapping Cache Organization

Direct

Mapping

Example

Direct Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w
words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+ • Number of blocks in main memory = 2s+
w/2w = 2s

• Number of lines in cache = m = 2r

• Size of tag = (s – r) bits

Direct Mapping pros & cons

• Simple

• Inexpensive

• Fixed location for given block

—If a program accesses 2 blocks that map to
the same line repeatedly, cache misses are
very highvery high

Victim Cache

• Lower miss penalty

• Remember what was discarded

—Already fetched

—Use again with little penalty

• Fully associative• Fully associative

• 4 to 16 cache lines

• Between direct mapped L1 cache and next
memory level

Associative Mapping

• A main memory block can load into any
line of cache

• Memory address is interpreted as tag and
word

• Tag uniquely identifies block of memory

• Every line’s tag is examined for a match

• Cache searching gets expensive

Associative Mapping from

Cache to Main Memory

Fully Associative Cache Organization

Associative

Mapping

Example

Tag 22 bit
Word
2 bit

Associative Mapping

Address Structure

• 22 bit tag stored with each 32 bit block of data

• Compare tag field with tag entry in cache to • Compare tag field with tag entry in cache to
check for hit

• Least significant 2 bits of address identify which
16 bit word is required from 32 bit data block

• e.g.

—Address Tag Data Cache line

—FFFFFC FFFFFC24682468 3FFF

Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w
words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+ • Number of blocks in main memory = 2s+
w/2w = 2s

• Number of lines in cache = undetermined

• Size of tag = s bits

Set Associative Mapping

• Cache is divided into a number of sets

• Each set contains a number of lines

• A given block maps to any line in a given
set

—e.g. Block B can be in any line of set i

• e.g. 2 lines per set

—2 way associative mapping

—A given block can be in one of 2 lines in only
one set

Set Associative Mapping

Example

• 13 bit set number

• Block number in main memory is modulo
213

• 000000, 00A000, 00B000, 00C000 … map
to same set

Mapping From Main Memory to Cache:

v Associative

Mapping From Main Memory to Cache:

k-way Associative

K-Way Set Associative Cache

Organization

Set Associative Mapping

Address Structure

• Use set field to determine cache set to
look in

Tag 9 bit Set 13 bit
Word
2 bit

look in

• Compare tag field to see if we have a hit

• e.g

—Address Tag Data Set
number

—1FF 7FFC 1FF 12345678 1FFF

—001 7FFC 001 11223344 1FFF

Two Way Set Associative Mapping

Example

Set Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w
words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2d• Number of blocks in main memory = 2d

• Number of lines in set = k

• Number of sets = v = 2d

• Number of lines in cache = kv = k * 2d

• Size of tag = (s – d) bits

Direct and Set Associative Cache

Performance Differences

• Significant up to at least 64kB for 2-way

• Difference between 2-way and 4-way at
4kB much less than 4kB to 8kB

• Cache complexity increases with
associativity

• Not justified against increasing cache to
8kB or 16kB

• Above 32kB gives no improvement

• (simulation results)

Figure 4.16

Varying Associativity over Cache Size
H

it
ra

tio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0
1k 2k 4k 8k 16k

Cache size (bytes)

direct
2-way
4-way
8-way
16-way

32k 64k 128k 256k 512k 1M

0.1

0.2

0.3

0.4

Replacement Algorithms (1)

Direct mapping

• No choice

• Each block only maps to one line

• Replace that line

Replacement Algorithms (2)

Associative & Set Associative

• Hardware implemented algorithm (speed)

• Least Recently used (LRU)

• e.g. in 2 way set associative

—Which of the 2 block is lru?

• First in first out (FIFO)• First in first out (FIFO)

—replace block that has been in cache longest

• Least frequently used

—replace block which has had fewest hits

• Random

Write Policy

• Must not overwrite a cache block unless
main memory is up to date

• Multiple CPUs may have individual caches

• I/O may address main memory directly

Write through

• All writes go to main memory as well as
cache

• Multiple CPUs can monitor main memory
traffic to keep local (to CPU) cache up to
date

• Lots of traffic• Lots of traffic

• Slows down writes

• Remember bogus write through caches!

Write back

• Updates initially made in cache only

• Update bit for cache slot is set when
update occurs

• If block is to be replaced, write to main
memory only if update bit is set

• Other caches get out of sync

• I/O must access main memory through
cache

• N.B. 15% of memory references are
writes

Line Size

• Retrieve not only desired word but a number of
adjacent words as well

• Increased block size will increase hit ratio at first
—the principle of locality

• Hit ratio will decreases as block becomes even
bigger
—Probability of using newly fetched information becomes
less than probability of reusing replacedless than probability of reusing replaced

• Larger blocks
—Reduce number of blocks that fit in cache
—Data overwritten shortly after being fetched
—Each additional word is less local so less likely to be
needed

• No definitive optimum value has been found
• 8 to 64 bytes seems reasonable
• For HPC systems, 64- and 128-byte most
common

Multilevel Caches

• High logic density enables caches on chip

—Faster than bus access

—Frees bus for other transfers

• Common to use both on and off chip
cache

—L1 on chip, L2 off chip in static RAM—L1 on chip, L2 off chip in static RAM

—L2 access much faster than DRAM or ROM

—L2 often uses separate data path

—L2 may now be on chip

—Resulting in L3 cache

– Bus access or now on chip…

Hit Ratio (L1 & L2)

For 8 kbytes and 16 kbyte L1

Unified v Split Caches

• One cache for data and instructions or
two, one for data and one for instructions

• Advantages of unified cache

—Higher hit rate

– Balances load of instruction and data fetch

– Only one cache to design & implement– Only one cache to design & implement

• Advantages of split cache

—Eliminates cache contention between
instruction fetch/decode unit and execution
unit

– Important in pipelining

Pentium 4 Cache

• 80386 – no on chip cache

• 80486 – 8k using 16 byte lines and four way set
associative organization

• Pentium (all versions) – two on chip L1 caches
—Data & instructions

• Pentium III – L3 cache added off chip

• Pentium 4• Pentium 4
—L1 caches

– 8k bytes

– 64 byte lines

– four way set associative

—L2 cache
– Feeding both L1 caches

– 256k

– 128 byte lines

– 8 way set associative

—L3 cache on chip

Intel Cache Evolution

Problem Solution
Processor on which feature

first appears

External memory slower than the system bus.
Add external cache using faster
memory technology.

386

Increased processor speed results in external bus becoming a
bottleneck for cache access.

Move external cache on-chip,
operating at the same speed as the
processor.

486

Internal cache is rather small, due to limited space on chip
Add external L2 cache using faster
technology than main memory

486

Contention occurs when both the Instruction Prefetcher and
the Execution Unit simultaneously require access to the
cache. In that case, the Prefetcher is stalled while the
Execution Unit’s data access takes place.

Create separate data and instruction
caches.

Pentium

Increased processor speed results in external bus becoming a
bottleneck for L2 cache access.

Create separate back-side bus that
runs at higher speed than the main
(front-side) external bus. The BSB is
dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the processor
chip.

Pentium II

Some applications deal with massive databases and must
have rapid access to large amounts of data. The on-chip
caches are too small.

Add external L3 cache. Pentium III

Move L3 cache on-chip. Pentium 4

Pentium 4 Block Diagram

Pentium 4 Core Processor

• Fetch/Decode Unit

—Fetches instructions from L2 cache

—Decode into micro-ops

—Store micro-ops in L1 cache

• Out of order execution logic

—Schedules micro-ops

—Based on data dependence and resources

—May speculatively execute

• Execution units

—Execute micro-ops

—Data from L1 cache

—Results in registers

• Memory subsystem

—L2 cache and systems bus

Pentium 4 Design Reasoning

• Decodes instructions into RISC like micro-ops before L1
cache

• Micro-ops fixed length
— Superscalar pipelining and scheduling

• Pentium instructions long & complex

• Performance improved by separating decoding from
scheduling & pipelining
— (More later – ch14)— (More later – ch14)

• Data cache is write back
—Can be configured to write through

• L1 cache controlled by 2 bits in register
—CD = cache disable

— NW = not write through

— 2 instructions to invalidate (flush) cache and write back then
invalidate

• L2 and L3 8-way set-associative
— Line size 128 bytes

ARM Cache Features

Core Cache
Type

Cache Size (kB) Cache Line Size
(words)

Associativity Location Write Buffer
Size (words)

ARM720T Unified 8 4 4-way Logical 8

ARM920T Split 16/16 D/I 8 64-way Logical 16

ARM926EJ-S Split 4-128/4-128 D/I 8 4-way Logical 16

ARM1022E Split 16/16 D/I 8 64-way Logical 16

ARM1026EJ-S Split 4-128/4-128 D/I 8 4-way Logical 8

Intel StrongARM Split 16/16 D/I 4 32-way Logical 32

Intel Xscale Split 32/32 D/I 8 32-way Logical 32

ARM1136-JF-S Split 4-64/4-64 D/I 8 4-way Physical 32

ARM Cache Organization

• Small FIFO write buffer

—Enhances memory write performance

—Between cache and main memory

—Small c.f. cache

—Data put in write buffer at processor clock
speedspeed

—Processor continues execution

—External write in parallel until empty

—If buffer full, processor stalls

—Data in write buffer not available until written

– So keep buffer small

ARM Cache and Write Buffer Organization

Internet Sources

• Manufacturer sites

—Intel

—ARM

• Search on cache

