ICOM 4215 Project 3 Fall 2011 Processor Controller

Today: Monday, November 21, 2011

Due date: Monday, December 5, 2011

Points: 100 points (Penalties: Next day: -10 points, Two days late: -25 points, Three days late: -40 points, Four days late or more: not accepted)

Group project – Three students per group

Submission:

- Via oral exam, aka "Happy Hour".
- Report, via email, subject on the email: Project 3 ICOM 4215, students will lose 5 points if the subject is changed. Send the email to <u>nayda@ece.uprm.edu</u>. Email due time, 11:59pm.

Project

Design the controller for the RISC AR3 previously designed in Projects 1 and 2.

Project requirements

Your team will design all the components of the processor and determine the control lines. Then the only part to turn in is the simulation either in Verilog or VHDL of the controller. As deliverable your group needs to specify all the components of the processor and the controller design and behavior. We will work with a 1 bus architecture. In addition, each group will have a different processor design, therefore, the controller's characteristics are different.

To make it clear: in order to generate the controller, you must know all the parts of your processor, but only the controller will be simulated in a hardware description language.

The report will contain: detailed schematics of the processor design. Detailed explanation of the controller, timing diagrams showing the behavior of the controller, appendix containing the code developed in VHDL or VERILOG.

The oral exam will be individually graded. Each student must demonstrate the proficiency and capability of designing a processor and a controller.

The following sections describe the processor.

General Processor Description: RISC AR3 (Same as before)

The RISC AR3 is a processor designed by your professor, taking the ideas from the Simple Risc Processor, from the Jordan and Heuring textbook, a processor designed by Manuel Jimenez, Sunil Vaidya, Bradley Vansant, and Dave Dorner for the EE 813 graduate course at Michigan State University, and the processor designed by Adem Kader and Mustafa Paksoy for the E25 : COMPUTER ARCHITECTURE course at Swathmore University.

Processor Features:

- 8-bit internal data bus
- Internal 256-word 8 bit wide program memory
- 8 byte register file
- On chip 4 bits hardware multiplier providing 8 bit results.
- 2 external I/O pins
- RISC instruction set: 21 instructions
 - o 6 arithmetic
 - o 4 logical
 - o 5 data transfer
 - o 5 control flow instructions
 - o 1 machine control

Processor Block Diagram

Figure 1: Block diagram of the RISC AR2

Memory and Registers

The size of the memory is 256 organized as 256 addresses of 1 byte each.

Figure 2: Visual illustration of the memory of the RISC AR3

Internally, the processor has 8 general purpose registers, 8 bits each. The names of the registers are from **R0** to **R7**.

7	0	
		RO
		R1
		R2
		R3
		R4
		R5
		R6
		R7

Figure 3: Visual illustration of the general purpose register structure of the RISC AR3

The processor has a 8 bit program counter called **PC**, an 8 bit accumulator called **A**, and a 16 bit instruction register called **IR**. There is a 4-bit status register called **SR**. The format of the Status

Register is ZCNO where Z is zero, C is Carry, N is negative, and O is overflow. When instructions are saved into memory, big endian ordering is used (A big-endian machine stores the most significant byte first).

Four addressing modes are supported by the processor:

- a) Implicit
- b) Immediate
- c) Direct
- d) Register indirect

The list below shows the different addressing modes supported and the corresponding instruction formats for each (see figures 4 to 7).

(a) Implicit addressing: The only operand needed is contained in the accumulator (A)

		5 b	it opc	ode					Don't care						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 4: Instruction format for the Implicit addressing mode

(b) Immediate addressing: The data to be operated is part of the instruction itself.

5 bit opcode						Immediate Operand									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 5: Instruction format for the Immediate addressing mode

(c) Direct: The memory location is indicated within the instruction

5 bit opcode				Regf		Direct Address									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 6: Instruction format for the Direct addressing mode

(d) *Register indirect*: Register f points to the memory location to be accessed.

	5 bit opcode					Regf			Don't care							
15	14	13	12	11	10	9	8	.7	6	5	4	3	2	1	0	

Figure 7: Instruction format for the Register Indirect addressing mode

Instruction Set

The following table is a summary of the instruction set of the RISC AR3. Note that register f refers to one of the eight general purpose registers.

Item	Opcode	Name	Operands	Addressing	Operation	Details
-		(Mnemonic)		Modes		
1	00 000	AND rf	Accumulator,	Register	$A \leftarrow A and rf$	Logical AND
			register f	Direct		
2	00 001	OR rf	Accumulator,	Register	A 🗲 A or rf	Logical OR
			register f	Direct		
2	00 010	XOR rf	Accumulator,	Register	A ← A xor rf	Logical XOR
			register f	Direct		_
3	00 011	ADDC rf	Accumulator,	Register	$A \leftarrow A + (rf)$	Addition with
			register f	Direct	+carry	carry
4	00 100	SUB rf	Accumulator,	Register	$A \leftarrow A - (rf)$	Subtraction
			register f	Direct		
5	00 101	MUL rf	Four least	Register	$A \leftarrow A * (rf)$	Multiply
			significant bits of	Direct		
			accumulator,			
			four least			
			significant bits of			
			register f			
6	00 110	NEG	Accumulator	Implicit	$A \leftarrow ^(A)$	Two's
						complement
7	00 111	NOT	Accumulator	Implicit	A ← not(A)	Negate
8	01 000	RLC	Accumulator	Implicit	A ← A6A0	Rotate left
					&Cf, Cf ←A7	through carry
9	01 001	RRC	Accumulator	Implicit	A ← Cf &	Rotate right
					A7A1, Cf	through carry
					←A0	
10	01 010	LDA rf	Accumulator,	Register	$A \leftarrow (rf)$	Load
			register f	Direct		accumulator
						from register f

Table 1: Instructior	set of the	RISC AR3
----------------------	------------	-----------------

11	01 011	STA rf	Accumulator, register f	Register Direct	(rf)← A	Store accumulator to register f
12	01 100	LDA addr	Accumulator	Direct	A ← [addr]	Load accumulator from memory location addr
13	01 101	STA addr	Accumulator	Direct	[addr]← A	Store accumulator to memory location addr
14	01 110	LDI Immediate	Accumulator	Immediate	A ← Immediate	Load accumulator with immediate
15	10 000	BRZ	Status register	Implicit	lf Z=1, PC ←r7	Branch if Zero
16	10 001	BRC	Status register	Implicit	If C=1, PC ←r7	Branch if Carry
17	10 010	BRN	Status register	Implicit	If N=1, PC ←r7	Branch if Negative
18	10 011	BRO	Status register	Implicit	lf O=1, PC ←r7	Branch if Overflow
19	11 111	STOP	PC	Implicit		Stop execution
20	11 000	NOP		Implicit		No operation

Arithmetic instructions use a 2's complement representation for negative numbers. This format is also used to compute memory addresses when accessing memory. Register 7 is a special register that will be used for branching conditions.