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Review for Exam 2 on Nov 29, 2010

� Topics:
� SRC
� RTN
� Your project 1.

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Code
� Determine the maximum value of a list of ten values. Use the SRC 

to code. Turn in the code. The first value resides on 0000FFFC.

� Chapter 2
� Exercises 2.7, 2.16, 2.19, 2.21, 2.23, 2.24, 2.25, 2.26, 2.27
� Check out exercise 2.30!!! A que se parece?
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Some Definitions

� Combinational logic: a digital logic circuit in which logical 
decisions are made based only on combinations of the inputs. 
e.g. an adder.

� Sequential logic: a circuit in which decisions are made based on 
combinations of the current inputs as well as the past history of 
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combinations of the current inputs as well as the past history of 
inputs. e.g. a memory unit.

� Finite state machine: a circuit which has an internal state, and 
whose outputs are functions of both current inputs and its 
internal state. e.g. a vending machine controller.
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The Combinational Logic Unit

� translates a set of inputs into a set of outputs according to one or 
more mapping functions. 

� Inputs and outputs for a CLU normally have two distinct (binary) 
values: high and low, 1 and 0, 0 and 1, or 5 v. and 0 v. for example.

� The outputs of a CLU are strictly functions of the inputs, and the 
outputs are updated immediately after the inputs change. A set of 
inputs i0 – in are presented to the CLU, which produces a set of 
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outputs according to mapping functions f0 – fm

Fig A.1
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Truth Tables

� Developed in 1854 by George Boole
� further developed by Claude Shannon (Bell Labs)
� Outputs are computed for all possible input combinations (how 

many input combinations are there?

Fig. A.2

Consider a room with two light switches.  How must they work †?

Inputs Output

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. A.2 Light Z

Switch BSwitch A

“Hot”

GND

A	 B	 Z

Inputs Output

0	 0	 0

0	 1	 1

1	 0	 1

1	 1	 0

†Don't show this to your electrician, or wire your h ouse this way. This circuit 
definitely violates the electric code. The practica l circuit never leaves the lines 
to the light "hot" when the light is turned off. Ca n you figure how?
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Truth Tables Showing All Possible Functions of 
Two Binary Variables
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� The more frequently used functions have names: AND, XOR, OR, 
NOR, XOR, and NAND. (Always use upper case spelling.)
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Logic Gates and Their Symbols

Fig. A.5 Logic 
symbols for 
AND, OR, 
buffer, and 
NOT Boolean 
functions

A

B
F = AB

A

B
F = A + B

AND OR

A	 B	 F

0	 0	 0

0	 1	 0

1	 0	 0

1	 1	 1

A	 B	 F

0	 0	 0

0	 1	 1

1	 0	 1

1	 1	 1
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� Note the use of the “inversion bubble.”
� (Be careful about the “nose” of the gate when drawing AND vs. OR.)

functions

F = A A

NOT (Inverter)

F = A A

Buffer

A	 F

0	 0

1	 1

A	 F

0	 1

1	 0
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Logic symbols for NAND, NOR, XOR, and XNOR 
Boolean functions  

Fig A.6
A

B
F = A B

A

B
F = A + B

NAND NOR

A	 B	 F

0	 0	 1

0	 1	 1

1	 0	 1

1	 1	 0

A	 B	 F

0	 0	 1

0	 1	 0

1	 0	 0

1	 1	 0
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NAND NOR

A

B
F = A + B

A

B
F = A     B

Exclusive-OR (XOR) Exclusive-NOR (XNOR)

A	 B	 F

0	 0	 0

0	 1	 1

1	 0	 1

1	 1	 0

A	 B	 F

0	 0	 1

0	 1	 0

1	 0	 0

1	 1	 1
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Fig A. 7   Variations of Basic Logic Gate 
Symbols

A
B F = ABC

(a) (b)

C

A

B
F = A + B
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a) 3 inputs            b) A Negated Input                c) Complementary Outputs

A

B

A + B

A + B

(c)
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Fig A.8  The Inverter at the Transistor Level
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Transistor 
Symbol

Power
Terminals A Transistor Used 

as an Inverter

(a) (b) (c) (d)

A A
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Emitter
Collector

GND = 0 V
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Logic (TTL)

Logical 1

+5 V

Logical 1

+5 V
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(a) (b)

Logical 1

Logical 0

2.4 V

0.4 V
0 V

Logical 1

Logical 0

2.0 V

0.8 V

0 V

Forbidden range Forbidden range
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A.10    Transistor-Level Circuits For
2-Input a) NAND and b)NOR Gates
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Tbl A.1  The Basic Properties of Boolean 
Algebra

A B  =  B A

A (B + C)  =  A B + A C

1 A = A

A A  = 0

A + B  =  B + A

A + B C  =  (A + B) (A + C)

0 + A  =  A

A + A  =  1

Commutative

Distributive

Identity

Inverse

PropertyRelationship Dual

Postulates

Principle of duality: The 
dual of a Boolean 
function is gotten by 
replacing AND with OR 
and OR with AND, 
constant 1s by 0s, and 
0s by 1s

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

0 A  =  0

A A  = A

A (B C)  =  (A B) C

1 + A  =  1

A + A  =  A

A + (B + C)  =  (A + B) + C Associative

A B  =  A + B A + B  =  A B
DeMorgan’s 
Theorem

Null

Idempotence

A  =  A Complement

Consensus 
Theorem

( A+ B)( A+ C)( B + C)

= (A +B)( A+ C )

AB+ AC + BC

= AB+ AC

Theorems

A, B, etc. are 
Literals; 0 and 
1 are 
constants.
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A.11 and A. 12   DeMorgan’s Theorem

0
0
1
1

0
1
0
1

A B

1
1
1
0

1
1
1
0

1
0
0
0

1
0
0
0

= =A B A  +  B A  +   B A B
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Discuss: Applying DeMorgan’s theorem by “pushing the  bubbles,” 
and “bubble tricks.”

A

B
F = A B

A + B = A + B = A BDeMorgan’s theorem:

A

B
F = A + B



S

2/e

C

D
A

The Sum-of-Products (SOP) Form

Fig. A.14—Truth 
Table for The 
Majority Function

A	 B	 C	 FMinterm

Index

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 0

0	 1	 1	 1

1	 0	 0	 0

1	 0	 1	 1

1	 1	 0	 1

1	 1	 1	 1

0

1

2

3

4

5

6

7

1

0

0-side 1-side

0

A balance tips to the left or 
right depending on whether 

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� transform the function into a two-level AND-OR equation
� implement the function with an arrangement of logic gates from the 

set {AND, OR, NOT}
� M is true when A=0, B=1, and C=1, or when A=1, B=0, and C=1, 

and so on for the remaining cases.
� Represent logic equations by using the sum-of-products (SOP) 

form

1	 1	 1	 17
right depending on whether 

there are more 0’s or 1’s.
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The SOP Form of the Majority Gate

� The SOP form for the 3-input majority gate is:

� M = ABC + ABC + ABC + ABC   = m3 + m5 +m6 +m7  =   Σ (3, 5, 6, 7)

� Each of the 2n terms are called minterms, running from 0 to 2n - 1

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Each of the 2 terms are called minterms, running from 0 to 2 - 1

� Note the relationship between minterm number and boolean value.
� Discuss: common-sense interpretation of equation.
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Fig A.15  A 2-Level AND-OR Circuit that 
Implements the Majority Function

BA

A B C 

C

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Discuss: What is the Gate Count?

F

A B C 

A B C 

A B C 
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Fig A.16  Notation Used at Circuit Intersections

Connection No connection
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Connection No connection

Connection No connection
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Fig A.17  A 2-Level OR-AND Circuit that 
Implements the Majority Function

BA

A + B + C 

C
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F

A + B + C 

A + B + C 

A + B + C 

A + B + C 
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Positive vs. Negative Logic

•Positive logic: truth, or assertion is represented by logic 1, higher voltage; 
falsity, de- or unassertion, logic 0, is represented by lower voltage.
•Negative logic: truth, or assertion is represented by logic 0 , lower voltage; 
falsity, de- or unassertion, logic 1, is represented by lower voltage

Gate Logic: Positive vs. Negative Logic

Normal Convention: Postive Logic/Active High
Low Voltage = 0;  High Voltage = 1

Alternative Convention sometimes used:  Negative Lo gic/Active Low

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Behavior in terms
of Electrical Levels

Two Alternative Interpretations
Positive Logic AND
Negative Logic OR

Dual Operations

Negative Logic Positive Logic V oltage T ruth T able 

F  
low 
low 
low 
high 

F  
0 
0 
0 
1 

F  
1 
1 
1 
0 

A  
low 
low 
high 
high 

B  
low 
high 
low 
high 

B  
0 
1 
0 
1 

A  
0 
0 
1 
1 

A  
1 
1 
0 
0 

B  
1 
0 
1 
0 

F 
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Fig A.18   Positive and Negative Logic (Cont’d.)

A
F = A B

Positive logic levelsVoltage levels Negative logic levels

A
F = A + B

A
F

Physical

A	 B	 F

0	 0	 0

0	 1	 0

1	 0	 0

1	 1	 1

	A	 B	 F

low	 low	 low

low	 high	 low

high	 low	 low

high	 high	 high

A	 B	 F

1	 1	 1

1	 0	 1

0	 1	 1

0	 0	 0

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

A

B
F = A B

A

B
F = A + B

A

B
F

Physical
AND gate

A

B
F = A B

Positive logic levelsVoltage levels Negative logic levels

A

B
F = A + B

A

B
F

Physical
NAND gate

A	 B	 F

0	 0	 1

0	 1	 1

1	 0	 1

1	 1	 0

	A	 B	 F

low	 low	 high

low	 high	 high

high	 low	 high

high	 high	 low

A	 B	 F

1	 1	 0

1	 0	 0

0	 1	 0

0	 0	 1
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Bubble Matching

� Active low signals are signified by a prime or overbar or /.
� Active high: enable
� Active low: enable’, enable, enable/ 
� Discuss microwave oven control:

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Discuss microwave oven control:
� Active high: Heat = DoorClosed • Start
� Active low: ? (hint: begin with AND gate as before.)
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Fig. A.19   Bubble Matching (Cont’d.)

Positive logic  x
0

Positive logic  x
1

Negative logic  x
0

Negative logic  x
1

Positive
logic

Negative
logic

(b)(a)
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Negative logic  x
0

Negative logic  x
1

Negative logic  x
0

Negative logic  x
1

Negative
logic

(c) (d)

Negative
logic

Bubble mismatch

Bubble match

Bubble match
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Digital Components

� High level digital circuit designs are normally made using 
collections of logic gates referred to as components, rather than 
using individual logic gates. The majority function can be viewed as 
a component.

� Levels of integration (numbers of gates) in an integrated circuit 
(IC):
small scale integration (SSI): 10-100 gates. 

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� small scale integration (SSI): 10-100 gates. 
� medium scale integration (MSI): 100 to 1000 gates.
� Large scale integration (LSI): 1000-10,000 logic gates.
� Very large scale integration (VLSI): 10,000-upward.
� These levels are approximate, but the distinctions are useful in 

comparing the relative complexity of circuits.
� Let us consider several useful MSI components:
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Fig A.20   The 
Data Sheet

SN7400 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

description

absolute maximum ratings

logic diagram (positive logic)

recommended operating conditions

Supply voltage, VCC
Input voltage:
Operating free-air temperature range:
Storage temperature range

7 V
5.5 V

0˚C to 70˚C
– 65˚C to 150˚C

function table (each gate)

INPUTS
A	 B	 Y

H	 H	 L
L	 X	 H
X	 L	 H

1A
1B
1Y
2A
2B
2Y

GND

1A
1B

1Y

VCC
4B
4A
4Y
3B
3A
3Y

1

2

3

4

5

6

7

14

13

12

11

10

9

8

OUTPUT

package (top view)

schematic (each gate)These devices contain four independent
2-input NAND gates.

VCC	 Supply voltage

V 	 High-level input voltage

4.75

2

5 5.25 V

V

MIN NOM MAX UNIT

Y

GND

A
B

VCC

130 Ω1.6 kΩ

1 kΩ

4 kΩ

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

1B
VIH	 High-level input voltage

VIL	 Low-level input voltage

IOH	 High-level output current

IOL	 Low-level output current

TA	 Operating free-air temperature

2

0

0.8

– 0.4

16

70

V

V

mA

mA

˚C

11

7

22

15

ns

ns

MINTEST CONDITIONSTO (output)FROM (input)PARAMETER NOM MAX UNIT

electrical characteristics over recommended operating free-air temperature range

switching characteristics, V CC = 5 V, TA = 25˚ C

VALUE OPERATING CONDITIONS

VOH	 VCC = MIN, VIL = 0.8 V, IOH = – 0.4 mA

VOL	 VCC = MIN, VIH = 2 V, IOL = 16 mA

IIH	 VCC = MAX, VI = 2.4 V

IIL	 VCC = MAX, VI = 0.4 V

ICCH	 VCC = MAX, VI = 0 V

ICCL	 VCC = MAX, VI = 4.5 V

tPLH

tPHL

RL = 400 Ω
CL = 15 pF

A or B Y

2.4 3.4

0.2

4

12

0.4

40

– 1.6

8

22

V

V

µA

mA

mA

mA

MIN TYP MAX UNIT

2A
2B

2Y

3A
3B

3Y

4A
4B

4Y

Y = A B



S

2/e

C

D
A

Figs A.21, A.22  The Multiplexer

F
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D
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D
2


D
3

F = A B D
0 

+ A B D
1 

+ A B D
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+ A B D
3

00
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10
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Fig  A.23  Implementing the Majority Function 
with an 8-1 Mux

F

A	 B	 C	 M

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 0

0

0

0

1

0

000

001

010

011

100
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Principle: Use the mux select to pick out the selec ted minterms of the function.

F
0	 1	 0	 0

0	 1	 1	 1

1	 0	 0	 0

1	 0	 1	 1

1	 1	 0	 1

1	 1	 1	 1

A B C

0

1

1

1

100

101

110

111
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Fig. A.24  More Efficiency: Using a 4-1 Mux to 
Implement the Majority F’n.

F

A	 B	 C	 F

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 1

0	 1	 1	 1

1	 0	 0	 0

0
0

1

C

C

00

01

10

11
1
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Principle: Use the A and B inputs to select a pair of minterms. The 
value applied to the MUX input is selected from {0,  1, C, C} to pick 
the desired behavior of the minterm pair.

1	 0	 0	 0

1	 0	 1	 1

1	 1	 0	 1

1	 1	 1	 0

A B

C

C
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Fig. A.25  The Demultiplexer (DEMUX)

D

D	 A	 B	 F
0	

F
1	

F
2	

F
3
	 

0	 0	 0	 0	 0	 0	 0

0	 0	 1	 0	 0	 0	 0

0	 1	 0	 0	 0	 0	 0

0	 1	 1	 0	 0	 0	 0

F
0


F
1

F
2

F
3

00

01

10

11
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F
0
 = D A B F

2
 = D A B

F
1
 = D A B F

3
 = D A B

0	 1	 1	 0	 0	 0	 0

1	 0	 0	 1	 0	 0	 0

1	 0	 1	 0	 1	 0	 0

1	 1	 0	 0	 0	 1	 0

1	 1	 1	 0	 0	 0	 1

A B
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Fig’s. A.26 and A.27: The Demultiplexer is a Decoder 
with an Enable Input

Compare to
Fig A.28

D

F
1

F
2




F
3

F
0
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BA

Enable

D
0
 = A B D

2
 = A BD

1
 = A B D

3
 = A B

Enable = 1

A	 B	 D
0	

D
1	

D
2	

D
3

0	 0	 1	 0	 0	 0

0	 1	 0	 1	 0	 0

1	 0	 0	 0	 1	 0

1	 1	 0	 0	 0	 1

A

B

D
0


D
1

D
2

D
3

00

01

10

11

Enable = 0

A	 B	 D
0	

D
1	

D
2	

D
3

0	 0	 0	 0	 0	 0

0	 1	 0	 0	 0	 0

1	 0	 0	 0	 0	 0

1	 1	 0	 0	 0	 0
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Fig A.28   A 2-4 Decoder
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Fig A.29   Using a Decoder to Implement the 
Majority Function

A

000
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Figs A.30, 31, The Priority Encoder

� An encoder translates a set of inputs into a binary encoding, 
� Can be thought of as the converse of a decoder. 
� A priority encoder imposes an order on the inputs.
� Ai has a higher priority than Ai+1

A
0	

A
1	

A
2	

A
3	

F
0	

F
1

0	 0	 0	 0	 0	 0
A

0
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F
0
 = A

0
A

1
A

3
 + A

0
A

1
A

2

F
1
 = A

0
A

2
A

3
 + A

0
A

1

0	 0	 0	 0	 0	 0

0	 0	 0	 1	 1	 1

0	 0	 1	 0	 1	 0

0	 0	 1	 1	 1	 0

0	 1	 0	 0	 0	 1

0	 1	 0	 1	 0	 1

0	 1	 1	 0	 0	 1

0	 1	 1	 1	 0	 1

1	 0	 0	 0	 0	 0

1	 0	 0	 1	 0	 0

1	 0	 1	 0	 0	 0

1	 0	 1	 1	 0	 0

1	 1	 0	 0	 0	 0

1	 1	 0	 1	 0	 0

1	 1	 1	 0	 0	 0

1	 1	 1	 1	 0	 0

F
0


F
1

A
0


A
1

A
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A
3

00

01

10

11

A
1

A
2
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1
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Fig A.32 Programmable Logic Arrays (PLAs)

� A PLA is a 
customizable AND 

A B C

OR matrix

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

customizable AND 
matrix followed by a 
customizable OR 
matrix:

AND matrix

F
1

F
0

Fuses
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Fig. A.33 Using a PLA to Implement the Majority 
Function

A B C

A B C

A B C

A B C
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Using PLAs to Implement an Adder

Figs A.34-36

Operand A
Operand B

0
0+

00

SumCarry 
Out

0
1+

10

1
1+

01

Example:

Carry
Operand A

Operand B

0   1   0   0

0   1   1   0

1   0   0   0

+

Carry In 0 0

1
0+

10

0 0

0
0+

10

1

0
1+

01

1

1
0+

01

1

1
1+

11

1
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A
B

C

F
0

F
1

PLA

A
i
	 B

i
	 C

i
	 S

i	
C

i+1
B

i

C
i

Full
adder

A
i

C
i+1

S
i

0	 0	 0	 0	 0

0	 0	 1	 1	 0

0	 1	 0	 1	 0

0	 1	 1	 0	 1

1	 0	 0	 1	 0

1	 0	 1	 0	 1

1	 1	 0	 0	 1

1	 1	 1	 1	 1

Operand B
Sum

0   1   1   0

1   0   1   0

+
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Fig A.37  A Multi-Bit Ripple-
Carry Adder

Fig A.38 PLA 
Realization of a FA

b
3 c

3

Full
adder

a
3

b
2 c

2

Full
adder

a
2

b
1 c

1

Full
adder

a
1

b
0 c

0
0

Full
adder

a
0

A B C
in
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Reduction (Simplification) of Boolean 
Expressions

� It may be possible to simplify the canonical SOP or POS forms.
� A smaller Boolean equation translates to a lower gate count in the 

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� A smaller Boolean equation translates to a lower gate count in the 
target circuit.

� We discuss two methods: algebraic reduction and Karnaugh map 
reduction.
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The Algebraic Method

F = A BC + AB C + ABC + ABC

F = A BC + AB C + AB(C + C)     Distributive Property

F = A BC + AB C + AB(1)             Complement  Property

F = A BC + AB C + AB                 Identity Property

Consider the majority function, F:

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

F = A BC + AB C + AB                 Identity Property

F = A BC + AB C + AB + ABC                 Idempotence

F = A BC + AC(B + B) + AB                 Identity Property

F = A BC + AC + AB                 Complement and Identity

F = A BC + AC + AB + ABC      Idempotence

F = BC(A + A) + AC + AB       Distributive

F = BC + AC + AB              Complement and Identity 
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Fig A.40   Venn Diagrams

AABC

AB'CAB'C'ABC'

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Each distinct region in the “Universe” represents a m interm.
This diagram can be transformed into a Karnaugh Map .

B

A'BC' A'B'C

A'BC A'B'C'
C
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Fig A.41  A K-Map of the Majority Function

Place a “1” in each cell that has a that minterm.
Cells on the outer edge of the map “wrap around”

A	 B	 C	 FMinterm

Index

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 0

0

1

2

1

0

0-side 1-side

0

00
AB

C

0 1

01 11 10
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The map contains all the minterms. Adjacent 1’s in the K-Map 
satisfy the Complement property of Boolean Algebra.  

0	 1	 1	 1

1	 0	 0	 0

1	 0	 1	 1

1	 1	 0	 1

1	 1	 1	 1

3

4

5

6

7

0-side 1-side

A balance tips to the left or 
right depending on whether 

there are more 0’s or 1’s.

0

1

1

11 1
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Fig A.42  Adjacency Groupings for the Majority 
Function

00
AB

C

0 1

01 11 10
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0

1

1

11 1

M= BC + AC + AB
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A.43  Minimized AND OR Circuit for the Majority 
Function

BA C
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F

M= BC + AC + AB
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Fig A.44  Minimal and not Minimal Groupings
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F = ABC + ACD +

ABC + ACD

F = BD + ABC + ACD +

 ABC + ACD

01

11

10

2

3

1 1

1

1

11 1 01

11

10

3

4

1 1

1

1

11 1
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Fig A.45  The Corners are Logically Adjacent

00
AB

CD

00 11 1

01 11 10
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F = BCD + BD + AB

01

11

10 1 1

1

1

1

1
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A.46  Two Different Minimized Equations

00
AB

CD

00 1 d

01 11 10 00
AB

CD

00 1 d

01 11 10
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F = BCD + BD

01

11

10 d

1 1

1 1

F = ABD + BD

01

11

10 d

1 1

11
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Speed and Performance

� The speed of a digital system is governed by 

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

The speed of a digital system is governed by 
� the propagation delay through the logic gates and 
� the propagation across interconnections.
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Fig A.47  Propagation Delay for a NOT Gate 
(From Hamacher et. al. 1990)

+5 V

0 V

Transition 
time

10%
The NOT gate
input changes
from 1 to 0

50%
(2.5 V)

90%

(Fall time)

Propagation delay
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+5 V

0 V

The NOT gate
output changes
from 0 to 1

Time

10%

50%
(2.5 V)

90%

Propagation delay

(Latency)

Transition 
time

(Rise time)
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Circuit Depth Affects Propagation Delay—Fig 
A.48
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F(ABCD) = A B C D + A B CD + A BC D + A BCD + AB C D + ABCD

= (B C + BC)AD + (B C + BC )A D + (B C + BC)

M

1

0

0

0

0

0

1

F

F

A B C

B

BC + BC

C

A D

D

1001

1010

1011
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1110

1111

0

0

1

1

0

00
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10

11

01

10

11
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Fig A.49  Fanin may Affect Circuit Depth

DCBABA DCBA DC

A + B + C + D
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((A + B) + C) + DA + B + C + D = (A + B) + (C + D)

Degenerate tree

(A + B) + (C + D)

Balanced tree

Associative law of Boolean algebra:

A + B + C + D

Initial high fan-in gate
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Sequential Logic

� The combinational logic circuits we have been studying so far 
have no memory.  The outputs always follow the inputs.

� There is a need for circuits with a memory, which behave 
differently depending upon their previous state.
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� An example is the vending machine, which must remember how 
many and what kinds of coins have been inserted, and which 
behave according to not only the current coin inserted, but also 
upon how many and what kind of coins have been deposited 
previously.

� These are referred to as finite state machines, because they can 
have at most a finite number of states.
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Fig A.50  Classical Model of a Finite State 
Machine (FSM)

i
o

i
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State bits
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Combinational
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Inputs Outputs
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Synchronization
signal

State bits

Q
n

s
n

Delay elements (one per state bit)

D
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Q
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A.51  A NOR Gate with a Lumped Delay

A

B

A
1

0

1

0

1

B
∆τ A + B
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1

0

Timing behavior

∆τ

A + B

This delay between input and output is at the basis  of the functioning of 
an important memory element, the flip-flop.
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A.52  The S-R (Set-Reset) Flip-Flop

S
Q

S

R

Q

Q
t	

S
t	

R
t	

Q
i+1

0	 0	 0	 0

0	 0	 1	 0

0	 1	 0	 1

0	 1	 1	 (disallowed)

1	 0	 0	 1
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Timing behavior

Q
R

2∆τ

∆τ

2∆τ

∆τ
Q

1	 0	 0	 1

1	 0	 1	 0

1	 1	 0	 1

1	 1	 1	 (disallowed)

The S-R flip-flop is an active high (positive logic ) device.
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Fig A.53  Converting a NOR S-R to an NAND S-
R

S
Q

S
Q Q

S
Q

R
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Q
R

Q
R

Q
R

Q
S

Active High
NOR Impl.

Push Bubbles
(DeMorgan’s)

Rearrange
Bubbles

Convert
from Bubbles
to Active Low
Signal Names
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Fig A.54  A Circuit with a Hazard

SC

C

B

A

AB

Glitch caused by

a hazard
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SC

B

AB

Q

A

Q
R

S

R

Timing behavior

2∆τ

∆τ

∆τ

a hazard

Q

Q

It is desirable to be able to “turn off”
the flip-flop so it does not respond to
such hazards.
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Fig A.55  The Clock Paces the System

Time
A

m
p

lit
u

d
e
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Cycle time = 25 ns

In a positive logic system, the “action”happens when the clock is 
high, or positive.  The low part of the clock cycle  allows 
propagation between subcircuits, so their inputs ar e stable at the 
correct value when the clock next goes high.
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A.56   A Clocked S-R Flip-Flop

S

CLK

Q

R

S

CLK
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The clock signal, CLK, turns on the inputs to the f lip-flop.

CLK

Q

R

Timing behavior

3∆τ

2∆τ

Q

Q
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Fig A.57  The Clocked D (Data) Flip-Flop

D

CLK
Q

Circuit

D

CLK
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Symbol

Q

Timing behavior

2∆τ

∆τ

2∆τ

∆τ

Q

Q

D Q

C Q

The clocked D flip-flop, sometimes called a latch, has a potential problem: If 
D changes while the clock is high, the output will also change. The Master-
Slave flip-flop solves this problem:
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A.58  The Master-Slave Flip-Flop

CLK

D

CLK

Q
S

Q
M

D Q
S

Q
S

DD Q
M

C C

Circuit

SlaveMaster
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Symbol

Timing behavior

3∆τ 2∆τ

∆τ

2∆τ 2∆τ

∆τ

Q
S

Q
SD Q

Q

The rising edge of the clock clocks new data into t he Master, while the slave 
holds previous data.  The falling edge clocks the n ew Master data into the 
Slave.
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Fig A.59  The Basic J-K Flip-Flop

J

K

CLK

Q

Q

J Q

K Q
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•The J-L flip-flop eliminates the S=R=1 problem of t he S-R flip-flop, 
because Q enables J while Q’ disables K, and vice-v ersa.
•However there is still a problem. If J goes momenta rily to 1 and then 
back to 0 while the flip-flop is active and in the reset, the flip-flop will 
“catch” the 1. 
•This is referred to as “1’s catching.”
•The J-K Master-Slave flip-flop solves this problem.

Symbol
Circuit
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Fig A.61  The Master-Slave J-K Flip-Flop

J

CLK

Q
J Q
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K

Symbol

Q

Circuit

K Q
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Fig A.60  The T (Toggle) Flip-Flop

TT

1 QJ Q
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� The presence of a constant 1 at J and K means that the flip-flop 
will change its state from 0-1 or 1-0 each time it is clocked by 
the T (Toggle) input.

Symbol

Q

Circuit

K Q
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Fig A.62  The Negative Edge-Triggered D Flip-
Flop

R
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Q
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Cycle time = 25 ns

Time
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� When the clock is high, the two input latches output 0, so the Main latch 
remains in its previous state, regardless of changes in D.

� When the clock goes high-low, values in the two input latches will affect 
the state of the Main latch.

� While the clock is low, D cannot affect the Main latch.

D

S

Stores D

Main latch

Cycle time = 25 ns
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Fig A.63  Finite State Machine Design Example: 
The Modulo-4 Counter

� Counter has a clock input, CLK, and  a RESET input.
� Has two output lines, which must take values of 00, 01, 10, and 11 on 

subsequent clock cycles.

0 1 1 0 0

4 3 2 1 0  Time (t)

0 0 0 0 1

Time (t)  4 3 2 1 0

0 1 0 1 02-bit

q
0

q
1

RESET
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It requires 
two flip-flops 
to store the 
state.

0 1 0 1 02-bit
synchronous

counter

CLK

D

s
1

Q

Q

D

s
0

Q

Q

1

s
0

s
1
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Fig A.64  State Transition Diagram for a 
Modulo(4) Counter

Present State  RESET
0 1

A B/01 A/00
B C/10 A/00
C D/11 A/00
D A/00 A/00

Next State

State
Table

Output 00
state

Output 01
state

BA
1/00

q
1

RESET
0/01

1/00q
0
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� The state diagram and state table tell “all there is to know” about the 
FSM, and are the basis for a provably correct design.

Present State  RESET
0 1

A:00 01 00
B:01 10 00
C:10 11 00
D:11 00 00

State
Table
With
States
Assigned

Output 10
state

Output 11
state

DC
0/11

0/10 0/00
1/00

1/00
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Fig A.67a

r(t) s 1(t)s 0(t) s 1s 0(t+1) q1q0(t+1)

0 00 01 01

0 01 10 10

0 10 11 11

0 11 00 00

1 00 00 00

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Develop equations from this truth table for s0(t+1), s1(t+1),
q0(t+1), and q1(t+1) from inputs r(t), s0(t) and s1(t)

1 00 00 00

1 01 00 00

1 10 00 00

1 11 00 00
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Fig A.67b

               s0(t +1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

s1(t +1) = r(t)s1(t)s0(t )+ r(t)s1(t)s0(t)

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

q0(t +1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

q1(t +1) = r(t)s1(t)s0(t )+ r(t)s1(t)s0(t)

Implement  these equations
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Fig A.68

CLK

RESET

q
1

D

s
1

Q

Q

Circuit for a 2-bit counter:
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CLK

q
0

Q

D

s
0

Q

Q

There are many simpler techniques for implementing counters.
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Example A.2: A Sequence Detector

� Design a machine that outputs a 1 when exactly 2 of the last 3 
inputs are 1.

� e.g. input sequence of 011011100 produces an output 

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� e.g. input sequence of 011011100 produces an output 
sequence of 001111010

� Assume input is a 1-bit serial line.
� Use D flip-flops and 8-1 Multiplexers
� Begin by constructing a state transition diagram:
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Fig A.69  State Transition Diagram for 
Sequence Detector

B

D

E

0/0

1/0
0/0

0/0

1/0

0/0

•Design a 
machine that 
outputs a 1 
when exactly 
2 of the last 3 
inputs are 1.

Pres. X
State 0 1
S2S1S0 S2S1S0Z S2S1S0Z
A=000 001/0 010/0
B =001 011/0 100/0
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C

A

F

G

0/0

1/0

1/0

1/1

1/1

0/0

0/1

1/0

•Discuss: the “meaning” of each state.

B =001 011/0 100/0
C=010 101/0 110/0
D=011 011/0 100/0
E=100 101/0 110/1
F=101 011/0 100/1
G=110 101/1 110/0

•Convert table to truth 
table (how?).
•Solve for s 2 s1 s0 and Z.
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Fig A.72  Logic Diagram for Seq. Det.
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CLK

Q Q Q101
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x
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Ex A.3  A Vending Machine Controller

� Acepts nickel, dime, and quarter. When value of money inserted 

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Acepts nickel, dime, and quarter. When value of money inserted 
equals or exceeds twenty cents, machine vends item and 
returns change if any, and waits for next transaction.

� Implement with PLA and D flip-flops.
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Fig A.73 State Trans. Diagram for Vending 
Machine Controller

1/0 = Return/Do not return a dime in change

1/0 = Return/Do not return a nickel in change

1/0 = Dispense/Do not dispense merchandise

A dime is
inserted

D/110
N/100

Q/110

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

A
0¢

B

Q/101

N/000

D/000

Q/111

N/000

N	 =	 Nickel
D	 =	 Dime
Q	 =	 Quarter

N/000
D/000

Q/111

D/100

5¢

C
10¢

D
15¢
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Fig A.75b  Truth Table for Vending Machine

	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0

	 1	 0	 0	 0	 1	 1	 0	 0	 0	 0

	 2	 0	 0	 1	 0	 0	 0	 1	 1	 0

	 3	 0	 0	 1	 1	 d	 d	 d	 d	 d

	 4	 0	 1	 0	 0	 1	 0	 0	 0	 0

Base 10
equivalent

Present
state Coin

Next
state

Dispense

Return nickel
Return dime

s
1

s
0

x
1

x
0

s
1

s
0

z
2

z
1

z
0
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	 4	 0	 1	 0	 0	 1	 0	 0	 0	 0

	 5	 0	 1	 0	 1	 1	 1	 0	 0	 0

	 6	 0	 1	 1	 0	 0	 0	 1	 0	 1

	 7	 0	 1	 1	 1	 d	 d	 d	 d	 d

	 8	 1	 0	 0	 0	 1	 1	 0	 0	 0

	 9	 1	 0	 0	 1	 0	 0	 1	 0	 0

	10	 1	 0	 1	 0	 0	 0	 1	 1	 1

	11	 1	 0	 1	 1	 d	 d	 d	 d	 d

	12	 1	 1	 0	 0	 0	 0	 1	 0	 0

	13	 1	 1	 0	 1	 0	 0	 1	 1	 0

	14	 1	 1	 1	 0	 0	 1	 1	 1	 1

	15	 1	 1	 1	 1	 d	 d	 d	 d	 d


(b)
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Fig A.75 a)FSM, b)Truth Table, c)PLA 
realization

s
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x
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x
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z
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z
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s
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s
1

Q
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(a)

5 x 5
PLA
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	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0

	 1	 0	 0	 0	 1	 1	 0	 0	 0	 0

	 2	 0	 0	 1	 0	 0	 0	 1	 1	 0

	 3	 0	 0	 1	 1	 d	 d	 d	 d	 d

	 4	 0	 1	 0	 0	 1	 0	 0	 0	 0

	 5	 0	 1	 0	 1	 1	 1	 0	 0	 0

	 6	 0	 1	 1	 0	 0	 0	 1	 0	 1

	 7	 0	 1	 1	 1	 d	 d	 d	 d	 d

	 8	 1	 0	 0	 0	 1	 1	 0	 0	 0

	 9	 1	 0	 0	 1	 0	 0	 1	 0	 0

	10	 1	 0	 1	 0	 0	 0	 1	 1	 1

	11	 1	 0	 1	 1	 d	 d	 d	 d	 d

	12	 1	 1	 0	 0	 0	 0	 1	 0	 0

	13	 1	 1	 0	 1	 0	 0	 1	 1	 0

	14	 1	 1	 1	 0	 0	 1	 1	 1	 1

	15	 1	 1	 1	 1	 d	 d	 d	 d	 d
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Mealy vs. Moore Machines

� Mealy Model:  Outputs are 
functions of Inputs and 
Present State.

� Previous FSM designs were 
Mealy Machines, because 
next state was computed 
from present state and 
inputs.

• Moore Model: Outputs are 
functions of Present State 
only.
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• Both are equally powerful.
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Fig A.77   Tri-state Buffers
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1	 0	 ø

1	 1	 ø

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� There is a third state: High impedance. This means the gate output 
is essentially disconnected from the circuit.

� This state is indicated by ∅ in the figure.

F = A C
or

F = ø

A

Tri-state buffer, inverted control

F = A C
or

F = ø

A

CC

Tri-state buffer
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Fig A78, A79  Registers
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Fig A.80  A Left-Right Shift Register with 
Parallel Read and Write
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Fig A.81  A Modulo 8 (3-bit) Ripple Counter

J

K

Q Q Q

CLK
Enable (EN)

RESET

Q
J

Q
K

Q
J111

K
Note the use of 
the T flip-flops. 
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of the next flip-
flop when its 
output is 1.
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