# ICOM 4215 Project 1 Fall 2010 Processor Simulator

Today: March 15, 2011

Due date: April 1, 2011

Points: 100 points (Penalties: Next day: -10 points, Two days late: -25 points, Three days late: -40

points, Four days late or more: not accepted)

Group project – Three students per group

#### Submission:

- Via oral exam, aka "Happy Hour"
- Report, via email

## **Project**

In order to understand how a processor works and the different aspects taken into consideration when designing a processor, we are requesting that you design a simulator for a simple processor. The following sections describe the processor.

# **General Processor Description: RISC AR2**

The RISC AR2 is a processor designed by your professor, taking the ideas from the Simple Risc Processor, from the Jordan and Heuring textbook, a processor designed by Manuel Jimenez, Sunil Vaidya, Bradley Vansant, and Dave Dorner for the EE 813 graduate course at Michigan State University, and the processor designed by Adem Kader and Mustafa Paksoy for the E25: COMPUTER ARCHITECTURE course at Swathmore University.

#### **Processor Features:**

- 8-bit internal data bus
- Internal 256-word 8 bit wide program memory
- 8 byte register file
- On chip 4 bits hardware multiplier providing 8 bit results.
- 2 external I/O pins
- RISC instruction set: 20 instructions
  - o 5 arithmetic
  - o 3 logical
  - o 5 data transfer
  - o 6 control flow instructions
  - o 1 machine control

## **Processor Block Diagram**

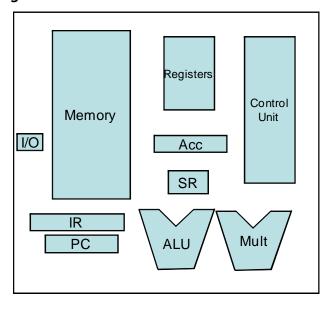



Figure 1: Block diagram of the RISC AR2

# **Memory and Registers**

The size of the memory is 256 organized as 256 addresses of 1 byte each.

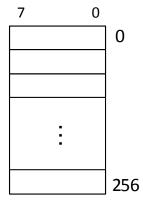



Figure 2: Visual illustration of the memory of the RISC AR2

Internally, the processor has 8 general purpose registers, 8 bits each. The names of the registers are from  ${\bf R0}$  to  ${\bf R7}$ .

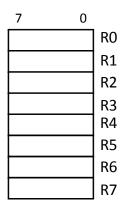



Figure 3: Visual illustration of the general purpose register structure of the RISC AR2

The processor has a 8 bit program counter called **PC**, an 8 bit accumulator called **A**, and a 16 bit instruction register called **IR**. There is a 4-bit status register called **SR**. The format of the Status

Register is ZCNO where Z is zero, C is Carry, N is negative, and O is overflow. When instructions are saved into memory, big endian ordering is used.

Four addressing modes are supported by the processor:

- a) Implicit
- b) Immediate
- c) Direct
- d) Register indirect

The list below shows the different addressing modes supported and the corresponding instruction formats for each (see figures 4 to 7).

(a) Implicit addressing: The only operand needed is contained in the accumulator (A)



Figure 4: Instruction format for the *Implicit* addressing mode

(b) Immediate addressing: The data to be operated is part of the instruction itself.



Figure 5: Instruction format for the *Immediate* addressing mode

(c) Direct: The memory location is indicated within the instruction

|    | 5 bit opcode |    |    |    | F  | Regf |   | Direct Address |   |   |   |   |   |   |   |
|----|--------------|----|----|----|----|------|---|----------------|---|---|---|---|---|---|---|
| 15 | 14           | 13 | 12 | 11 | 10 | 9    | 8 | 7              | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Figure 6: Instruction format for the *Direct* addressing mode

(c) Register indirect: Register f points to the memory location to be accessed.

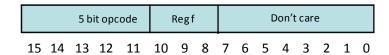



Figure 7: Instruction format for the Register Indirect addressing mode

## **Instruction Set**

The following table is a summary of the instruction set of the RISC AR2. Note that register f refers to one of the eight general purpose registers.

Table 1: Instruction set of the RISC AR2

| Item | Opcode | Name                 | Operands                                                                                             | Addressing      | Operation                   | Details                                |
|------|--------|----------------------|------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|----------------------------------------|
| 1    | 00 000 | (Mnemonic) AND A, rf | Accumulator, register f                                                                              | Modes<br>Direct | A ← A and rf                | Logical AND                            |
| 2    | 00 001 | OR A, rf             | Accumulator, register f                                                                              | Direct          | A ← A or rf                 | Logical OR                             |
| 2    | 00 010 | XOR A, rf            | Accumulator, register f                                                                              | Direct          | A ← A xor rf                | Logical XOR                            |
| 3    | 00 011 | ADDC A, rf           | Accumulator, register f                                                                              | Direct          | A ← A + (rf)<br>+carry      | Addition with carry                    |
| 4    | 00 100 | MUL A, rf            | Four least significant bits of accumulator, four least significant bits of register f                | Direct          | A ← A *(rf)                 | Multiply                               |
| 5    | 00 101 | DIV A, rf            | Four least<br>significant bits of<br>accumulator,<br>four least<br>significant bits of<br>register f | Direct          | A ← A / (rf)                | Division                               |
| 6    | 00 110 | NEG A                | Accumulator                                                                                          | Implicit        | A ← not(A)                  | Two's complement                       |
| 7    | 00 111 | RLC A                | Accumulator                                                                                          | Implicit        | A ← A6A0<br>&Cf, Cf ← A7    | Rotate left<br>through carry           |
| 8    | 01 000 | RRC A                | Accumulator                                                                                          | Implicit        | A ← Cf &<br>A7A1, Cf<br>←A0 | Rotate right through carry             |
| 9    | 01 001 | DEC A                | Accumulator                                                                                          | Implicit        | A ← A-1                     | Decrement accumulator                  |
| 10   | 01 010 | LDA rf               | Accumulator, register f                                                                              | Direct          | A ← (rf)                    | Load<br>accumulator<br>from register f |

| 11 | 01 011 | STA rf    | Accumulator,    | Direct    | (rf)← A        | Store           |
|----|--------|-----------|-----------------|-----------|----------------|-----------------|
|    |        |           | register f      |           |                | accumulator to  |
|    |        |           |                 |           |                | register f      |
| 12 | 01 100 | LDA addr  | Accumulator     | Direct    | A ← [addr]     | Load            |
|    |        |           |                 |           |                | accumulator     |
|    |        |           |                 |           |                | from memory     |
|    |        |           |                 |           |                | location addr   |
| 13 | 01 101 | STA addr  | Accumulator     | Direct    | [add]← A       | Store           |
|    |        |           |                 |           |                | accumulator to  |
|    |        |           |                 |           |                | memory          |
|    |        |           |                 |           |                | location addr   |
| 14 | 01 110 | LDI       | Accumulator     | Immediate | A <del>C</del> | Load            |
|    |        | Immediate |                 |           | Immediate      | accumulator     |
|    |        |           |                 |           |                | with            |
|    |        |           |                 |           |                | immediate       |
| 15 | 10 000 | BRZ       | Status register | Implicit  | If Z=1, PC     | Branch if Zero  |
|    |        |           |                 |           | ←r7            |                 |
| 16 | 10 001 | BRC       | Status register | Implicit  | If C=1, PC     | Branch if Carry |
|    |        |           |                 |           | ←r7            |                 |
| 17 | 10 010 | BRN       | Status register | Implicit  | If N=1, PC     | Branch if       |
|    |        |           |                 |           | ←r7            | Negative        |
| 18 | 10 011 | BRO       | Status register | Implicit  | If O=1, PC     | Branch if       |
|    |        |           |                 |           | ←r7            | Overflow        |
| 19 | 11 111 | STOP      | PC              | Implicit  |                | Stop execution  |
| 20 | 11 000 | NOP       |                 | Implicit  |                | No operation    |

Arithmetic instructions use a 2's complement representation for negative numbers. This format is also used to compute memory addresses when accessing memory. Register 7 is a special register that will be used for branching conditions.

## **Processor Configuration**

The processor operates with instructions located in main memory from address 0 to address 127. When the processor starts, it will always do so from location 0 and 1.

The system will also have two devices connected to I/O ports using the following memory locations:

250-251: 16 bits, input from keyboard

252 – 255: Hex display, each byte will represent one digit

The information coming from the keyboard will be entered at the keyboard of the computer running the simulation. The hex display will be presented at the computer screen of the computer running the simulation. The data entered in the keyboard will have the corresponding ASCII value and the data written to the hex display should have the ASCII code for the corresponding character. The following figure illustrates a possible configuration of the graphical user interface for the simulator you will design.

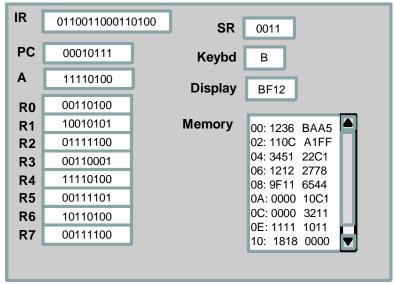



Figure 8: Possible graphical user interface arrangement

### **Project requirements**

#### **Simulator characteristics**

The simulator must simulate all instructions in the instruction set, including all addressing modes. The simulator will run the instructions located in the main memory, starting with address zero (PC=0). The contents of memory are changed as a file with instructions is loaded into the simulator. Your professor will bring a simulation file on the oral exam day. This file will contain one line per instruction, and it will be represented in HEX characters (4 Hex characters).

The following example illustrates an input file:

2B00

2C00

1B82

6270

The simulator should run in two different modes: run or step. Run mode will allow programs to run from start to end. Step mode will run one instruction at a time. Please notice that the last instruction in any file should be stop. The simulator must show the contents of all registers, program counter, instruction register, and the contents of a section of memory. The directions in memory should be shown in HEX representation

Your design may use a graphical user interface or a plain text interface. Use any programming language of your preference.