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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

Designing Computer
Architecture 
Research Workloads

D esigners of microarchitectures for general-
purpose microprocessors once based their
design decisions on experts’ intuition and
rules of thumb. Since the mid-1980s, how-
ever, microarchitecture research has be-

come a systematic process that uses simulation tools
extensively.1 Although architectural simulators
model microarchitectures at a high abstraction
level, the increasing complexity of both the microar-
chitectures and the applications that run on them
make these simulators very time-consuming. 

Simulators must execute huge numbers of instruc-
tions to create a workload representative of real
applications. The Standard Performance Evaluation
Corporation’s (SPEC) CPU2000 benchmark suite,2

for example, has many more dynamic instructions
than CPU95, which it replaced. Although real hard-
ware evaluations benefit from this increase, using
architectural simulators for such large numbers of
instructions becomes infeasible. The dynamic in-
struction count of the SPEC2000 benchmark parser
with reference input is about 500 billion instruc-
tions, or three weeks of simulation at 300,000
instructions per second.3 Including the benchmarks
that must be run for a huge number of design points
creates an unreasonably long simulation time,
stretching the time to market. Running the simula-
tions in parallel results in a huge equipment cost.

To solve this problem, we can use reduced input
sets instead of reference input sets. The ideal reduced
input set has a limited dynamic instruction count
but produces program behavior comparable to the
reference input set behavior. MinneSPEC collects a

number of reduced input sets for some CPU2000
benchmarks.4 It proposes three reduced inputs:
smred for short simulations, mdred for medium-
length simulations, and lgred for full-length,
reportable simulations. Although a number of tech-
niques—such as truncating or modifying the
inputs—can derive these reduced input sets from the
reference inputs, it is unclear whether these reduced
input sets will produce behavior similar to a pro-
gram using a reference input set. 

We have developed a methodology that reliably
quantifies program behavior similarity.5 As such, we
can validate MinneSPEC—that is, we can verify
whether the reduced input sets result in program
behavior similar to the reference inputs. To over-
come the shortcomings of previous work, our
methodology uses metrics that are closely related to
performance. We also use statistical data analysis
techniques to calculate the similarity in program
behavior based on uncorrelated workload charac-
teristics. 

MEASURING PROGRAM BEHAVIOR SIMILARITY 
To validate the reduced input sets they propose in

MinneSPEC, A.J. KleinOsowski and David Lilja4

performed a chi-square analysis of each set’s func-
tion-level execution profiles. A resemblance of these
profiles does not necessarily imply a resemblance
of other workload characteristics that are probably
more closely related to performance, such as
instruction mix, cache behavior, and branch pre-
dictability. If we scale down the number of times a
function executes by a factor S, for example, we still

MinneSPEC proposes reduced input sets that microprocessor designers
can use to model representative short-running workloads. A four-step
methodology verifies the program behavior similarity of these input sets 
to reference sets.
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have the same function-level execution profile.
However, a similar function-level execution pro-

file doesn’t guarantee a similar behavior concern-
ing, for example, the data memory. Indeed,
reducing the input set often reduces the size of the
data the program is working on while leaving the
function-level execution profile untouched. As a
result, data cache behavior can differ significantly. 

Rafael Saavedra and Alan Jay Smith took another
approach to quantifying program behavior similar-
ity.6 They measured several dynamic workload char-
acteristics—instruction mix, number of function
calls, number of address computations, and so on.
To measure similarities among computer programs,
they used the squared Euclidean distance in the space
built using these workload characteristics. Small dis-
tances imply similar behavior; large distances imply
dissimilar behavior. Because they measured the dis-
tance between programs on correlated workload
characteristics, Saavedra and Smith gave a higher
weight to correlated workload characteristics, which
might give a distorted view of the workload space. 

Wei Chung Hsu and colleagues7 studied the
impact of input sets on program behavior using
high-level metrics, such as procedure-level profiles
and instructions executed per cycle (IPC), and low-
level metrics, such as the execution paths leading to
data cache misses. 

OUR METHODOLOGY
Our methodology consists of four steps: 

• collecting program-input pairs, 
• choosing workload characteristics, 
• performing principal components analysis

(PCA), and 
• performing cluster analysis. 

For more detailed discussions of the statistical
analysis techniques, see the “Principal Components
Analysis” and “Cluster Analysis” sidebars.

Collect program-input pairs
In the first step of our methodology, we collected

a large number of program-input pairs. For this
study, we used the program-input pairs provided
by the reduced SPEC CPU2000 benchmark input
data set distribution (www.spec.org/cpu2000/
research/umn/), limiting ourselves to the integer
benchmarks. We also used a database workload
consisting of TPC-D queries from the Transaction
Processing Performance Council (www.tpc.org).
These decision support queries ask complex ques-
tions of complex data structures.

Principal Components Analysis
Principal components analysis (PCA) is a statistical data analysis tech-

nique that builds on the assumption that many variables are correlated
and hence measure the same or similar properties of the program-input
pairs.1 PCA computes principal components—new variables that are
linear combinations of the original variables such that all principal com-
ponents are uncorrelated. 

PCA transforms the p variables X1, X2, … , Xp into p principal
components Z1, Z2, … , Zp with 

Zi = 

This transformation has the properties 

• Var[Z1] > Var[Z2] > … > Var[Zp], which means that Z1 contains
the most information and Zp the least; and

• Cov[Zi, Zj] = 0, i ≠ j, which means that there is no information
overlap between the principal components.

The total variance in the data remains the same before and after 
the transformation, namely 

Some principal components have a large variance while others have
a small variance. Eliminating the components with the smallest vari-
ance reduces the number of variables while controlling the amount of
information that is thrown away. Retaining q principal components sig-
nificantly reduces the information, as q is usually less than p. To mea-
sure the fraction of information retained in this q-dimensional space,
we use the amount of variance (shown below) explained by the q prin-
cipal components computed as

We can interpret the most important q principal components, which in
our study are linear combinations of the original workload characteristics,
in terms of these characteristics. To facilitate our interpretation, we apply
the varimax rotation.1 This rotation makes the coefficient aij either close to
±1 or zero, such that the original variables either strongly impact a princi-
pal component or don’t impact it. Although varimax rotation is an orthog-
onal transformation, implying that the rotated principal components are still
uncorrelated, the first component might not explain the largest variance. 

Next we display the various benchmarks as points in the q-dimensional
space built by the q principal components. To do this, we compute the val-
ues of the q principal components for each program-input pair. This repre-
sentation lets us measure the impact of input data sets on program behavior. 

During principal components analysis, we can use either normalized
or nonnormalized data. The data is normalized when the mean of each
variable is zero and its variance is one. For nonnormalized data, vari-
ables with a larger variance get a higher weight. We used normalized
data in our experiments because of our heterogeneous data—for exam-
ple, the instruction-level parallelism variance is orders of magnitude
larger than the data cache miss-rate variance.

Reference
1. B.F.J. Manly, Multivariate Statistical Methods: A Primer, 2nd ed., Chapman

& Hall, 1994.
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We downloaded the SPEC benchmarks, opti-
mized for the Alpha 21264 architecture, from the
SimpleScalar Web site (www.simplescalar.com). In
addition, we used single-threaded Postgres v6.3
(www.postgresql.org), an advanced open source
database, running the decision support TPC-D
queries over a 10-Mbyte balanced tree (Btree)
indexed database. The Digital C compiler fully
optimizes postgres (–04) and links it statically. We
used a total of 101 program-input pairs, including
ref, train, and test from SPEC and smred, mdred,
and lgred from MinneSPEC. 

Choose workload characteristics
It’s important to choose the workload charac-

teristics for your analysis carefully. A workload
characteristic that doesn’t affect a computer pro-
gram’s behavior, such as dynamic instruction count,
might discriminate program-input pairs on that
characteristic without giving any information
about the application’s behavior. 

Obviously, the workload characteristics you
choose will depend on your application domain. If
you’re using the workload to design a low-power
microprocessor, you’ll need to include power-
related characteristics (or characteristics that sig-
nificantly affect power consumption). On the other
hand, if you’re designing a high-performance
microprocessor, you should select characteristics
more directly related to performance, such as the
amount of parallelism. 

Our analysis included the 18 workload charac-
teristics listed in Table 1. We commonly use these
characteristics to describe computer programs for
general-purpose microprocessors. 

We measure workload characteristics using
ATOM,8 a binary instrumentation tool for the
Alpha architecture. ATOM can transform statically

linked binaries to instrumented binaries. Executing
this instrumented binary yields the workload char-
acteristics we used throughout our analysis.
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Cluster analysis groups n cases (program-input pairs in our
study) based on the measurements of p variables (or workload
characteristics). The final goal is a number of clusters contain-
ing program-input pairs with similar behavior. 

Researchers often use a hierarchical clustering algorithm to
perform cluster analysis, starting with a matrix of distances
between the n cases or program-input pairs. The algorithm starts
by considering each program-input pair as a cluster. In each iter-
ation, the algorithm combines the two clusters with the short-
est linkage distance to form a new cluster. Clusters are gradually
merged until all cases are in a single cluster. 

A dendrogram, which graphically represents the linkage dis-
tance at each iteration of the algorithm, can represent the clus-
ter analysis. The user then must decide how many clusters to
use, a decision that can be based on the linkage distance.

Cluster analysis depends on an appropriate distance measure.
In our analysis, we compute the distance between two program-
input pairs as the Euclidean distance in the workload space

obtained using PCA. Principal components, which are uncor-
related by construction, determine the space’s axes values, mean-
ing the values are uncorrelated. 

The absence of correlation is important when calculating
Euclidean distances because two correlated variables—variables
that essentially measure the same thing—will contribute a similar
amount to the overall distance as an independent variable, and as
such would be counted twice, which is undesirable. This is also
why we apply cluster analysis in the transformed q-dimensional
space rather than the original p-dimensional space. Moreover, the
variance along the q principal components measures the diversity
along each principal component by construction.

In addition to defining the distance between two program-
input pairs, we must define the distance between clusters of two
program-input pairs. We can compute the distance between two
clusters by using the furthest-neighbor strategy or complete link-
age. This strategy defines the distance between two clusters as
the largest distance between two members of each cluster.

Cluster Analysis

Table 1. Workload characteristics included in the analysis.

Benchmark No. Workload characteristic

Instruction mix 1 Percentage integer arithmetic operations
2 Percentage logical operations
3 Percentage shift and byte manipulation operations
4 Percentage load/store operations
5 Percentage control operations

Branch  6 Branch prediction accuracy for a hybrid branch predictor
prediction selecting between 16 Kbits of 8,192 entries bimodal predictor 
(BP) and 16 Kbits of 8,192 entries gshare predictor (history = 12 

branches); the metapredictor contains 16 Kbits of 8,192 
entries.

Sequential 7 Number of instructions between two sequential flow breaks,
flow breaks or the number of instructions between two taken branches
Data cache 8 Miss rate of a 8-Kbyte direct-mapped data cache 
miss rates

9 Miss rate of a 16-Kbyte direct-mapped data cache
10 Miss rate of a 32-Kbyte two-way set-associative data cache
11 Miss rate of a 64-Kbyte two-way set-associative data cache
12 Miss rate of a 128-Kbyte four-way set-associative data cache

Instruction cache 13 Miss rate of a 8-Kbyte direct-mapped instruction cache
miss rates

14 Miss rate of a 16-Kbyte direct-mapped instruction cache
15 Miss rate of a 32-Kbyte two-way set-associative instruction 

cache
16 Miss rate of a 64-Kbyte two-way set-associative instruction 

cache
17 Miss rate of a 128-Kbyte four-way set-associative 

instruction cache
Instruction-level 18 The amount of ILP on an infinite-resource processor 
parallelism (assuming an infinite number of functional units, perfect 
(ILP) caches, perfect branch prediction, and unit instruction 

execution latency)—that is, an infinite-resource processor 
only considers read-after-write dependencies through 
registers and memory.
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Because this binary runs on native hardware, we
can obtain these characteristics quickly.

Perform PCA
Next, we normalize the 101 (number of pro-

gram-input pairs) by 18 (or p, number of workload
characteristics) data points so that for each work-
load characteristic, the average equals zero and the
variance equals one. Using Statistica (www.statsoft.
com), a statistical computation package, we per-
formed the statistical analysis described in the
“Principal Components Analysis” sidebar on these
normalized data points. 

First we input a 2D matrix with p = 18 columns
representing the original workload characteristics and
101 rows representing the program-input pairs. PCA
transforms the p original variables into new variables,
or principal components, which are linear combina-
tions of the original variables. These principal com-
ponents are uncorrelated—that is, unlike the original
variables, they contain no information overlap. 

Based on the amount of information contained in
the components, the user must now determine how
many principal components to retain, say q.
Typically, a user must keep two to four principal
components to retain most—for example, more
than 85 percent—of the total information. 

The user can analyze and interpret the q princi-
pal components with the coefficients aij, or factor
loadings. A positive coefficient aij means that work-
load characteristic Xj positively impacts principal
component Zi; a negative coefficient aij implies a
negative impact. If a coefficient aij is close to zero,
Xj has almost no impact on Zi.

Analyzing the workload space. For our program-
input pairs, PCA extracts four principal compo-
nents, accounting for 85.5 percent of the total
variance. Figure 1 presents the factor loadings for

these four components—for example, PC1 =
–0.25(ILP) + 0.10(branch prediction) + 0.11
(load/store operations) + …. As the figure shows,

• PC1, which accounts for 25 percent of the total
variance, is positively dominated by the
instruction cache miss rate. Thus, program-
input pairs with a high value for the first prin-
cipal component in the q-dimensional space
have a high instruction cache miss rate. 

• PC2, which accounts for 29.7 percent of the
total variance, is negatively dominated by the
data cache miss rate. Thus, program-input
pairs with a high value for the second princi-
pal component have a low data cache miss
rate. 

• PC3, which accounts for 13.5 percent of the
total variance, is positively dominated by the
percentage of logical and shift operations and
negatively dominated by the percentage of load/
store operations. 

• PC4, which accounts for 17.3 percent of the
total variance, is positively dominated by the
branch prediction accuracy and the percent-
age of control operations and negatively dom-
inated by the percentage of arithmetic opera-
tions and the number of instructions between
two sequential flow breaks. 

The variances in the four components mean that
the variability in program behavior due to the input
set results from, in decreasing order, the data cache
behavior, the instruction cache behavior, the branch
behavior, and the instruction mix. 

Visualizing the workload space. We can now display
the program-input pairs in the workload space
shaped by the q principal components by com-
puting the following for each pair: 
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ILP = Instruction-level parallelism
Hybrid BP = Branch prediction accuracy
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Figure 2 shows an excerpt of this 4D space con-
taining the program-input pairs associated with
SPEC benchmark gzip. Figure 2a compares the first
principal component PC1 (instruction cache behav-
ior) to principal component PC2 (data cache behav-
ior), and Figure 2b compares PC3 (percentage of
load/store operations) to PC4 (branch behavior).
Program-input pairs with a high data cache miss
rate and a high instruction cache miss rate appear
in the bottom right-hand corner of Figure 2a as
smred.graphic. 

In Figure 2, input sets associated with random
are very close to each other in the workload space,
indicating that they have a minor impact on the
program behavior. Other input sets—graphic and
program, for example—lead to increased diversity
in program behavior.

We can use the transformed workload space in
Figure 2 to measure the impact of input data sets on
program behavior. Weak clustering (for various
inputs and a single benchmark) indicates that the
input set significantly impacts program behavior,
whereas strong clustering indicates a small impact. 

The representation also suggests which input sets
we should select when composing a workload.
Strong clustering suggests that one or a few input
sets could represent the cluster. Using fewer input
sets reduces the total simulation time significantly
because it reduces the total number of benchmark-
input pairs, and it lets us select the benchmark-
input pair with the smallest dynamic instruction
count. 

Perform cluster analysis
The “Cluster Analysis” sidebar describes how

we use the distance between the various program-
input pairs in the 4D space as a subsequent step in
workload analysis.

Figure 3 shows the dendrogram displaying the
linkage distance obtained through cluster analysis.
Program-input pairs connected by small linkage
distances are clustered in early iterations of the
analysis and thus exhibit similar behavior—simi-
lar cache miss rates, branch predictability, instruc-
tion mix, and so on. Program-input pairs connected
by large linkage distances, on the other hand,
exhibit dissimilar behavior. 

In other words, we can now use the dendrogram
to evaluate program behavior similarity due to
input set. The analysis provides three possible clas-
sifications: 

• S, or small linkage distance (d < 2), reveals sim-
ilar behavior; 

• M, or medium linkage distance (2 < d < 5),
reveals more or less similar behavior; and

• D, or large linkage distance (d > 5), reveals dis-
similar behavior. 

Input smred.graphic, for example, is far from its
reference counterpart ref.graphic (linkage distance
±17). Input smred.log, on the other hand, is very
close to ref.log (linkage distance ±1). The linkage
distance from inputs smred.program and mdred.
program to ref.program is ±3.5, a medium distance. 

We can use the information that PCA provides—
in particular, the workload space visualization (see
Figure 2)—to explain why two program-input
pairs differ. For example, smred.graphic differs
from ref.graphic because of variations along the
second and the third principal component—that
is, the data cache miss rate is too high and the per-
centage of load/store operations is too low for
smred.graphic.

VALIDATING MINNESPEC
To validate MinneSPEC, we use the dendrogram

in Figure 3 to verify each reduced input’s similar-
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ity or dissimilarity to the corresponding reference
input. We can make some general conclusions
based on the results: 

• The lgred input is generally more similar to the
reference input than the other inputs proposed
in MinneSPEC.

• The smallest inputs, smred and mdred, gener-
ally lead to dissimilar behavior. 

KleinOsowski and Lilja4 compared input sets
based on function-level execution profiles—distri-
butions measuring the fraction of time a program
spends in each function—measured using the Unix
utility gprof. Although their results generally agree
with ours, some results differ. KleinOsowski and
Lilja found, for example, the lgred input of bench-
mark vpr.place to be similar to the ref input; our
results show dissimilar behavior. The reverse also
occurs: Whereas the MinneSPEC results suggest a
dissimilar behavior for the train input of bzip2 and
the reduced inputs for perlbmk, we show medium
similarity. For more information about Minne-
SPEC, see www-mount.ee.umn.edu/~lilja/spec2000/.

Generally, comparing input sets based on func-
tion-level execution profiles is accurate. In some
cases, however, similar function-level execution
profiles might result in dissimilar program behav-
ior, and vice versa, so we must be careful when
comparing input sets using these profiles only.
KleinOsowski and Lilja also recognize this prob-

lem and validate their results with instruction mixes
and data cache miss rates. 

We include additional characteristics, such as
instruction cache miss rate and branch prediction
accuracy, and integrate these measurements in a
single analysis. Our analysis revealed several inter-
esting results:

• The reference inputs of vortex result in very
similar behavior, raising the question of
whether simulating all reference inputs during
architectural simulations is useful.

• For vpr, place and route reference inputs result
in dissimilar behavior. Thus, we should con-
sider both inputs in architectural simulations.

• For vortex, mdred is closer to the ref input than
the lgred input, although it has a smaller
dynamic instruction count. As such, mdred is
a better candidate for architectural simula-
tions.

• The reduced inputs for perlbmk are very sim-
ilar to each other, but differ slightly from the
reference inputs. The test input, on the other
hand, resembles the ref.perfect input.

For the database workload used in this analysis
(postgres running the TPC-D queries), we observe
five clusters of queries, as Figure 3 shows: queries
2, 4, and 10; queries 5, 6, and 12 to 16; query 8;
queries 3, 7, and 9; and queries 11 and 17. This
clustering reveals that queries can lead to quite dis-
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similar database behavior. An analysis of the cause
of this difference reveals that the second cluster con-
tains queries resulting in relatively low data cache
miss rates, and the fourth and the fifth clusters con-
tain queries with relatively high instruction cache
miss rates.

We could also use our methodology in profile-
driven compiler optimizations. During this process,
the compiler uses information from previous pro-
gram runs—obtained through profiling—to guide
compiler optimizations. Obviously, for effective
optimizations, the input set used to obtain this pro-
filing information should be similar to a large set
of possible input sets.

Joseph Fisher and Stefan Freudenberger9 show
that branches generally take the same direction inde-
pendent of the input data. They warn, however, that
some program runs exercise entirely different parts
of the program. Hence, we can’t use these runs to
predict each other. In a study of several types of pro-
files, such as basic block counts and the number of
references to global variables, David Wall10

obtained the largest speedup when using the same
input for profiling and measuring the speedup. 

D esigning a computer architecture research
workload should be done with care. Our
methodology lets us select a limited set of rep-

resentative program-input pairs with small
dynamic instruction counts. As such, we can spend
less time simulating microprocessor architectures
while still producing reliable research results. �
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