/[2.34

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

Chapter 2—Machines, Machine Languages, and Digital Logia

—

RTN (Register Transfer Notation)

Provides a formal means of describing machine
structure and function

Is at the “just right” level for machine descriptions
Does not replace hardware description languages

Can be used to describe what a machine does (an
abstract RTN) without describing how the machine
does it

Can also be used to describe a particular hardware
implementation (a concrete RTN)

/[2.35

language

Chapter 2—Machines, Machine Languages, and Digital Logia‘

RTN (cont’d.)

« At first you may find this “meta description” confusing,
because it is a language that is used to describe a

* You will find that developing a familiarity with RTN will
aid greatly in your understanding of new machine
desigh concepts

« We will describe RTN by using it to describe SRC

\Computer Systems Design and Architecture by V. Heuring and H. Jordan

© 1997 V. Heuring and H. Jordan /j

Some RTN Features—
Using RTN to Describe a Machine’s
Static Properties

Static Properties
- Specifying registers

* IR(31..0) specifies a register named “IR” having 32 bits
numbered 31to 0
* “Naming” using the := nhaming operator:

- op(4..0) := IR(31..27) specifies that the 5 msbs of IR be
called op, with bits 4..0

* Notice that this does not create a new register, it just
generates another name, or “alias,” for an already existing
register or part of a register

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

// 2-36 Chapter 2—Machines, Machine Languages, and Digital Logia

—

/[2-37 Chapter 2—Machines, Machine Languages, and Digital Logia

Using RTN to Describe
Dynamic Properties

—

Dynamic Properties

« Conditional expressions:
(op=12) — R[ra] < R[rb] + R[rc]: ; defines the add instruction

/o

“if” condition “then” RTN Assignment Operator

This fragment of RTN describes the SRC add instruction. It says,

“when the op field of IR = 12, then store in the register specified
by the ra field, the result of adding the register specified by the
rb field to the register specified by the rc field.”

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2-38 Chapter 2—Machines, Machine Languages, and Digital Logia

Using RTN to Describe the SRC (Static)
Processor State

—

Processor state

PC31..0): program counter

(memory addr. of next inst.)
IR31..0): instruction register
Run: one bit run/halt indicator
Strt: start signal

R[0..31](31..0): general purpose registers

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2.39

RTN Register Declarations

« General register specifications shows some features of

the notation

- Describes a set of 32 32-bit registers with names R[0] to

R[31]
R[0..31](31..0):
\
Name of
registers
Register # msb #
in square
brackets Isb# Bit#in
.. specifies angle
a range of brackets
indices

\Computer Systems Design and Architecture by V. Heuring and H. Jordan

Chapter 2—Machines, Machine Languages, and Digital Logia‘

Colon separates
statements with
no ordering

© 1997 V. Heuring and H. Jordan /j

Memory Declaration:
RTN Naming Operator

« Defining names with formal parameters is a powerful
formatting tool

« Used here to define word memory (big-endian)

Main memory state
Mem[0..232- 1)(7..0): 232 addressable bytes of memory
M[x]31..0):= Mem[x]#Mem[x+1]#Mem[x+2]#Mem[x+3]:

o1

Dummy Naming Concatenation All bits in
parameter operator operator register if no
bit index given

// 2-40 Chapter 2—Machines, Machine Languages, and Digital Logia

—

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

// 2-41 Chapter 2—Machines, Machine Languages, and Digital Logia

RTN Instruction Formatting Uses
Renaming of IR Bits

—

Instruction formats
op@..0) := IR31..27): operation code field
ra4..0) := IR@26..22): target register field
rb@..0) := IR21..17): operand, address index, or
branch target register
rc@4..0) :=1R(16..12): second operand, conditional
test, or shift count register
IR21..0): long displacement field
IR(16..0): short displacement or
immediate field
c3(11..0) := IR(11..0): count or modifier field

c121..0

)
c2(16..0) :

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

// 2-42

e New RTN notation is used

expression

\Computer Systems Design and Architecture by V. Heuring and H. Jordan

Specifying Dynamic Properties of SRC:
RTN Gives Specifics of Address
Calculation

Effective address calculations (occur at runtime):

disp(31..0) := ((rb=0) —» ¢2X16..0) {sign extend}: displacement
(rb+0) —» R[rb] + c2(16..0) {sign extend, 2’s comp.}): address
rel(31..0) := PC(31..0) + c1(21..0) {sign extend, 2’s comp.}: relative

* Renaming defines displacement and relative addresses

- condition — expression means if condition then

- modifiers in { } describe type of arithmetic or how short
numbers are extended to longer ones

- arithmetic operators (+ - */ etc.) can be used in expressions
* Register R[0] cannot be added to a displacement

Chapter 2—Machines, Machine Languages, and Digital Logia

—

address

© 1997 V. Heuring and H. Jordan /j

Detailed Questions Answered by the
RTN for Addresses

« What set of memory cells can be addressed by direct
addressing (displacement with rb=0)

- If c2(16)=0 (positive displacement) absolute
addresses range from 00000000H to 0000FFFFH

- If c2(16)=1 (negative displacement) absolute
addresses range from FFFFO000H to FFFFFFFFH

 What range of memory addresses can be specified by
a relative address

- The largest positive value of C1(21..0) is 221-1 and
its most negative value is -221, so addresses up to
221-1 forward and 221 backward from the current PC
value can be specified

* Note the difference between rb and R[rb]

// 2-43 Chapter 2—Machines, Machine Languages, and Digital Logia

—

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

Instruction Interpretation: RTN
Description of Fetch-Execute

* Need to describe actions (not just declarations)
« Some new notation

Logical NOT
Logical AND

i trucé'wn/_ interpretation := (
—Runastrt — Run « 1:
Run — (IR < M[PC]: PC < PC + 4; instruction_execution));

f

Register transfer Separates statements
that occur in sequence

/[2-44 Chapter 2—Machines, Machine Languages, and Digital Logia

—

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

// 2.45

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

Chapter 2—Machines, Machine Languages, and Digital Logia

—

RTN Sequence and Clocking

In general, RTN statements separated by : take place
during the same clock pulse

Statements separated by ; take place on successive
clock pulses

This is not entirely accurate since some things written
with one RTN statement can take several clocks to
perform

More precise difference between : and ;

- The order of execution of statements separated by
: does not matter

- If statements are separated by ; the one on the left
must be complete before the one on the right starts

