Notes on SRC Shift RTN

- In the abstract RTN, n is defined with :=
- In the concrete RTN, it is a physical register
- n not only holds the shift count but is used as a counter in step T6
- Step T6 is repeated n times as shown by the recursion in the RTN
- The control for such repeated steps will be treated later

Data Path/Control Unit Separation

- Interface between data path and control consists of gate and strobe signals
- A gate selects one of several values to apply to a common point, say a bus
- A strobe changes the values of the flip-flops in a register to match new inputs
- The type of flip-flop used in registers has much influence on control and some on data path
 - Latch: simpler hardware, but more complex timing
 - Edge triggering: simpler timing, but about twice the hardware

Reminder on Latch- and Edge-Triggered Operation

Latch output follows input while strobe is high

Edge-triggering samples input at edge time

Fig 4.5 Extracting c1, c2, and OP from the Instruction Register, IR<31...0>

 I(21) is the sign bit of C1 that must be extended

From Figure 4.3

5

Op IR

Select logic

32 c1(31..0)

32 c2(31..0)

c1_{out} -

- I(16) is the sign bit of C2 that must be extended
- Sign bits are fanned out from one to several bits and gated to bus

Chapter 4—Processor Design

Fig 4.6 The CPU–Memory Interface: Memory Address and Memory Data Registers, MA<31...0> and MD<31...0>

 MD is loaded from memory or from CPU bus

 MD can drive CPU bus or memory bus

Fig 4.7 The ALU and Its Associated Registers

From Concrete RTN to Control Signals: The Control Sequence

Tbl 4.6 The Instruction Fetch

```
\begin{array}{lll} \underline{Step} & \underline{Concrete\ RTN} & \underline{Control\ Sequence} \\ \hline T0 & MA \leftarrow PC\colon C \leftarrow PC + 4; & PC_{out}, MA_{in}, INC4, C_{in} \\ \hline T1 & MD \leftarrow M[MA]\colon PC \leftarrow C; & Read, C_{out}, PC_{in}, Wait \\ \hline T2 & IR \leftarrow MD; & MD_{out}, IR_{in} \\ \hline T3 & Instruction\_execution \\ \end{array}
```

- The register transfers are the concrete RTN
- The control signals that cause the register transfers make up the control sequence
- Wait prevents the control from advancing to step T3 until the memory asserts Done

Control Steps, Control Signals, and Timing

- Within a given time step, the order in which control signals are written is irrelevant
 - In step T0, C_{in}, Inc4, MA_{in}, PC_{out} == PC_{out}, MA_{in}, INC4, C_{in}
- The only timing distinction within a step is between gates and strobes
- The memory read should be started as early as possible to reduce the wait
- MA must have the right value before being used for the read
- Depending on memory timing, Read could be in T0

Control Sequence for the SRC add Instruction

add (:= op = 12) \rightarrow R[ra] \leftarrow R[rb] + R[rc]:

Tbl 4.7 The add Instruction

```
Control Sequence
Step Concrete RTN
T0
          MA \leftarrow PC: C \leftarrow PC + 4;
                                                  PC<sub>out</sub>, MA<sub>in</sub>, INC4, C<sub>in</sub>, Read
T1
          MD \leftarrow M[MA]: PC \leftarrow C; C_{out}, PC_{in}, Wait
T2 IR \leftarrow MD;
                                                  MD<sub>out</sub>, IR<sub>in</sub>
T3 A \leftarrow R[rb];
                                                  Grb, Rout, Ain
T4 C \leftarrow A + R[rc];
                                                  Grc, R<sub>out</sub>, ADD, C<sub>in</sub>
T5
         R[ra] \leftarrow C;
                                                  C<sub>out</sub>, Gra, R<sub>in</sub>, End
```

- Note the use of Gra, Grb, and Grc to gate the correct 5-bit register select code to the registers
- End signals the control to start over at step T0

Control Sequence for the SRC addi Instruction

```
addi (:= op= 13) \rightarrow R[ra] \leftarrow R[rb] + c2\langle16..0\rangle {2's comp., sign ext.} :
```

Tbl 4.8 The addi Instruction

<u>Step</u>	Concrete RTN	<u>Control Sequence</u>
T0.	$MA \leftarrow PC: C \leftarrow PC + 4;$	PC _{out} , MA _{in} , Inc4, C _{in} , Read
T1.	$MD \leftarrow M[MA]; PC \leftarrow C;$	C _{out} , PC _{in} , Wait
T2.	IR ← MD;	MD _{out} , IR _{in}
T3.	$A \leftarrow R[rb];$	Grb, R _{out} , A _{in}
T4.	$C \leftarrow A + c2\langle 160 \rangle \{ sign ext. \};$	c2 _{out} , ADD, C _{in}
T5.	R[ra] ← C ;	C _{out} , Gra, R _{in} , End

 The c2_{out} signal sign extends IR(16..0) and gates it to the bus

Control Sequence for the SRC st Instruction

```
st (:= op = 3) \rightarrow M[disp] \leftarrow R[ra] : disp\langle 31..0 \rangle := ((rb=0) \rightarrow c2\langle 16..0 \rangle {sign extend} : (rb=0) \rightarrow R[rb] + c2\langle 16..0 \rangle {sign extend, 2's complement} ) :
```

The st Instruction

<u>Step</u>	Concrete RTN	<u>Control Sequence</u>
T0-T2	Instruction fetch	Instruction fetch
T3	$A \leftarrow (rb=0) \rightarrow 0: rb \neq 0 \rightarrow R[rb];$	Grb, BA _{out} , A _{in}
T4	$C \leftarrow A + c2\langle 160 \rangle \{ sign-extend \};$	c2 _{out} , ADD, C _{in}
T5	$MA \leftarrow C;$	C _{out} , MA _{in}
T6	$MD \leftarrow R[ra];$	Gra, R _{out} , MD _{in} , Write
T7	$M[MA] \leftarrow MD;$	Wait, End

Note BA_{out} in T3 compared to R_{out} in T3 of addi

Fig 4.8 The Shift Counter

- The concrete RTN for shr relies upon a 5-bit register to hold the shift count
- It must load, decrement, and have an = 0 test

Tbl 4.10 Control Sequence for the SRC shr Instruction—Looping

```
Control Sequence
<u>Step</u>
           Concrete RTN
T0–T2 Instruction fetch
                                                             Instruction fetch
T3 n \leftarrow IR(4..0);
                                                            c1<sub>out</sub>, Ld
T4 (n=0) \rightarrow (n \leftarrow R[rc]\langle 4..0);
                                                           n=0 \rightarrow (Grc, R_{out}, Ld)
T5 C \leftarrow R[rb];
                                                            Grb, R<sub>out</sub>, C=B, C<sub>in</sub>
                                                            n\neq 0 \rightarrow (C_{out}, SHR, C_{in})
T6
            Shr (:= (n\neq 0) \rightarrow
            (C\langle 31..0\rangle \leftarrow 0\#C\langle 31..1\rangle:
                                                               Decr, Goto6)
             n \leftarrow n-1; Shr));
            R[ra] \leftarrow C;
T7
                                                            C<sub>out</sub>, Gra, R<sub>in</sub>, End
```

 Conditional control signals and repeating a control step are new concepts

Branching

cond :=
$$(c3\langle 2..0\rangle = 0 \rightarrow 0$$
:
 $c3\langle 2..0\rangle = 1 \rightarrow 1$:
 $c3\langle 2..0\rangle = 2 \rightarrow R[rc] = 0$:
 $c3\langle 2..0\rangle = 3 \rightarrow R[rc] \neq 0$:
 $c3\langle 2..0\rangle = 4 \rightarrow R[rc]\langle 31\rangle = 0$:
 $c3\langle 2..0\rangle = 5 \rightarrow R[rc]\langle 31\rangle = 1$):

This is equivalent to the logic expression

cond =
$$(c3\langle 2..0\rangle = 1) \lor (c3\langle 2..0\rangle = 2) \land (R[rc] = 0) \lor (c3\langle 2..0\rangle = 3) \land \neg (R[rc] = 0) \lor (c3\langle 2..0\rangle = 4) \land \neg R[rc]\langle 31\rangle \lor (c3\langle 2..0\rangle = 5) \land R[rc]\langle 31\rangle$$

Fig 4.9 Computation of the Conditional Value CON

NOR gate does = 0 test of R[rc] on bus

Tbl 4.11 Control Sequence for SRC Branch Instruction, br

br (:= op = 8)
$$\rightarrow$$
 (cond \rightarrow PC \leftarrow R[rb]):

<u>Step</u>	Concrete RTN	Control Sequence
T0-T2	Instruction fetch	Instruction fetch
T3	$CON \leftarrow cond(R[rc]);$	Grc, R _{out} , CON _{in}
T4	$CON \rightarrow PC \leftarrow R[rb];$	Grb, R_{out} , $CON \rightarrow PC_{in}$, End

- Condition logic is always connected to CON, so R[rc] only needs to be put on bus in T3
- Only PC_{in} is conditional in T4 since gating R[rb] to bus makes no difference if it is not used

Summary of the Design Process

Informal description ⇒ formal RTN description ⇒ block diagram architecture ⇒ concrete RTN steps ⇒ hardware design of blocks ⇒ control sequences ⇒ control unit and timing

- At each level, more decisions must be made
 - These decisions refine the design
 - Also place requirements on hardware still to be designed
- The nice one-way process above has circularity
 - Decisions at later stages cause changes in earlier ones
 - Happens less in a text than in reality because
 - Can be fixed on re-reading
 - Confusing to first-time student

Fig 4.10 Clocking the Data Path: Register Transfer Timing

- t_{R2valid} is the period from begin of gate signal till inputs to R2 are valid
- t_{comb} is delay through combinational logic, such as ALU or cond logic

© 1997 V. Heuring and H. Jordan

Signal Timing on the Data Path

- Several delays occur in getting data from R1 to R2
- Gate delay through the 3-state bus driver—t_g
- Worst case propagation delay on bus—t_{bp}
- Delay through any logic, such as ALU—t_{comb}
- Set up time for data to affect state of R2—t_{su}
- Data can be strobed into R2 after this time

$$t_{R2valid} = t_g + t_{bp} + t_{comb} + t_{su}$$

- Diagram shows strobe signal in the form for a latch. It must be high for a minimum time—t_w
- There is a hold time, t_h, for data after strobe ends

Effect of Signal Timing on Minimum Clock Cycle

A total latch propagation delay is the sum

$$T_I = t_{su} + t_w + t_h$$

- All above times are specified for latch
- t_h may be very small or zero
- The minimum clock period is determined by finding longest path from ff output to ff input
 - This is usually a path through the ALU
 - Conditional signals add a little gate delay
- Using this path, the minimum clock period is

$$t_{min} = t_g + t_{bp} + t_{comb} + t_l$$

Latches Versus Edge-Triggered or Master-Slave Flip-Flops

- During the high part of a strobe a latch changes its output
- If this output can affect its input, an error can occur
- This can influence even the kind of concrete RTs that can be written for a data path
- If the C register is implemented with latches, then
 C ← C + MD; is not legal
- If the C register is implemented with master-slave or edge-triggered flip-flops, it is OK

The Control Unit

- The control unit's job is to generate the control signals in the proper sequence
- Things the control signals depend on
 - The time step Ti
 - The instruction opcode (for steps other than T0, T2, T2)
 - Some few data path signals like CON, n = 0, etc.
 - Some external signals: reset, interrupt, etc. (to be covered)
- The components of the control unit are: a time state generator, instruction decoder, and combinational logic to generate control signals

Fig 4.11 Control Unit Detail with Inputs and Outputs

Synthesizing Control Signal Encoder Logic

```
Step Control Sequence
T0. PC<sub>out</sub>, MA<sub>in</sub>, Inc4, C<sub>in</sub>, Read
T1. C<sub>out</sub>, PC<sub>in</sub>, Wait
T2. MD<sub>out</sub>, IR<sub>in</sub>
```

	add		addi		st		shr	
<u>Step</u>	Control Sequence	<u>Step</u>	Control Sequence	<u>Step</u>	Control Sequence	<u>Step</u>	Control Sequence	
T3.	Grb, R _{out} , A _{in}	T3.	Grb, R _{out} , A _{in}	T3.	Grb, BA _{out} , A _{in}	T3.	c1 _{out} , Ld	
T4.	Grc, R _{out} , ADD, C _{in}	T4.	c2 _{out} , ADD, C _{in}	T4.	c2 _{out} , ADD, C _{in}	T4.	n=0 \rightarrow (Grc, R $_{ extstyle extsty$	\bullet
T5.	c _{out} , Gra, R _{in} , End	T5.	C _{out} , Gra , R _{in} , End	T5.	C _{out} , MA _{in}	T5.	Grb, R _{out} , C=B	
				T6.	Gra, R _{out} , MD _{in} , Write	T6.	n≠0 \rightarrow (C $_{ ext{out}}$, SHR, C $_{ ext{in}}$,	
				T7.	Wait, End	17.	Decr, Goto7) C _{out} , Gra, R _{in} , End	

Design process:

- Comb through the entire set of control sequences.
- Find all occurrences of each control signal.
- Write an equation describing that signal.

Example: Gra = T5-(add + addi) + T6-st + T7-shr + ...

Use of Data Path Conditions in Control Signal Logic

<u>Step</u>	Control Sequence
TO.	PC _{out} , MA _{in} , Inc4, C _{in} , Read
T1.	C _{out} , PC _{in} , Wait
T2.	MD _{Out} , IR _{in}

	add		addi		st		shr	
<u>Step</u>	Control Sequence	<u>Step</u>	Control Sequence	<u>Step</u>	Control Sequenc	e Step	Control Sequence	
T3.	Grb, R _{out} , A _{in}	T3.	Grb, R _{out} , A _{in}	T3.	Grb, BA _{out} , A _{in}	T3.	c1 _{out} , Ld	
T4.	Grc, R _{out} , ADD, C _{in}	T4.	c2 _{out} , ADD, C _{in}	T4.	c2 _{out} , ADD, C _{in}	T4.	$n=0 o (Grc, {}_{R_{out'}Ld)}$	$\bullet \bullet \bullet$
T5.	C _{out} , Gra, R _{in} , End	T5.	C _{Out} , Gra, R _{in} , End	T5.	C _{out} , MA _{in}	T5.	Grb, R _{out} , C=B	
				T6.	Gra, R _{out} , MD _{in} , Write	T6.	n≠0 → (C _{out} , SHR, C _{in} ,	
				T7.	Wait, End	T	Decr, Goto7)	
						T7.	C _{out} , Gra, R _{in} , End	

Example: $Grc = T4 \cdot add + T4 \cdot (n=0) \cdot shr + ...$

Fig 4.12 Generation of the logic for PC_{in} and G_{ra}

Fig 4.13 Branching in the Control Unit

- 3-state gates allow
 6 to be applied to counter input
- Reset will synchronously reset counter to step T0

Fig 4.14 The Clocking Logic: Start, Stop, and Memory Synchronization

Mck is master clock oscillator

Computer Systems Design and Architecture by V. Heuring and H. Jordan

© 1997 V. Heuring and H. Jordan

The Complete 1-Bus Design of SRC

- High-level architecture block diagram
- Concrete RTN steps
- Hardware design of registers and data path logic
- Revision of concrete RTN steps where needed
- Control sequences
- Register clocking decisions
- Logic equations for control signals
- Time step generator design
- Clock run, stop, and synchronization logic

Other Architectural Designs Will Require a Different RTN

- More data paths allow more things to be done in one step
- Consider a two bus design
- By separating input and output of ALU on different buses, the C register is eliminated
- Steps can be saved by strobing ALU results directly into their destinations

Fig 4.15 The 2-Bus SRC Microarchitecture

- Bus A carries data going into registers
- Bus B carries data being gated out of registers
- ALU function C = B is used for all simple register transfers

Tbl 4.13 The 2-Bus add Instruction

 $\begin{array}{lll} \underline{Step} & \underline{Concrete \; RTN} & \underline{Control \; Sequence} \\ \hline T0 & MA \leftarrow PC; & PC_{out}, \; C = B, \; MA_{in}, \; Read \\ \hline T1 & PC \leftarrow PC + 4: \; MD \leftarrow M[MA]; PC_{out}, \; INC4, \; PC_{in}, \; Wait \\ \hline T2 & IR \leftarrow MD; & MD_{out}, \; C = B, \; IR_{in} \\ \hline T3 & A \leftarrow R[rb]; & Grb, \; R_{out}, \; C = B, \; A_{in} \\ \hline T4 & R[ra] \leftarrow A + R[rc]; & Grc, \; R_{out}, \; ADD, \; Sra, \\ \hline R_{in}, \; End & \\ \hline \end{array}$

- Note the appearance of Grc to gate the output of the register rc onto the B bus and Sra to select ra to receive data strobed from the A bus
- Two register select decoders will be needed
- Transparent latches will be required at step T2

Performance and Design

$$\% Speedup = \frac{T_{1-bus} - T_{2-bus}}{T_{2-bus}} \times 100$$

Where

$$T = Execution\ Time = IC \times CPI \times \tau$$

Speedup By Going to 2 Buses

- •Assume for now that IC and τ don't change in going from 1 bus to 2 buses
- •Naively assume that CPI goes from 8 to 7 clocks.

$$\%Speedup = \frac{T_{1-bus} - T_{2-bus}}{T_{2-bus}} \times 100$$

$$= \frac{IC \times 8 \times \tau - IC \times 7 \times \tau}{IC \times 7 \times \tau} \times 100 = \frac{8 - 7}{7} \times 100 = 14\%$$

Class Problem:

How will this speedup change if clock period of 2-bus machine is increased by 10%?

3-Bus Architecture Shortens Sequences Even More

- A 3-bus architecture allows both operand inputs and the output of the ALU to be connected to buses
- Both the C output register and the A input register are eliminated
- Careful connection of register inputs and outputs can allow multiple RTs in a step

Fig 4.16 The 3-Bus SRC Design

- A-bus is ALU operand 1, B-bus is ALU operand 2, and C-bus is ALU output
- Note MA input connected to the B-bus

Tbl 4.15 The 3-Bus add Instruction

 $\begin{array}{lll} \underline{Step} & \underline{Concrete\ RTN} & \underline{Control\ Sequence} \\ \hline T0 & MA \leftarrow PC \colon MD \leftarrow M[MA]; \ PC_{out}, \ MA_{in}, \ INC4, \ PC_{in}, \\ & PC \leftarrow PC + 4 \colon & Read, \ Wait \\ \hline T1 & IR \leftarrow MD; & MD_{out}, \ C = B, \ IR_{in} \\ \hline T2 & R[ra] \leftarrow R[rb] + R[rc]; & GArc, \ RA_{out}, \ GBrb, \ RB_{out}, \\ & ADD, \ Sra, \ R_{in}, \ End \\ \end{array}$

- Note the use of 3 register selection signals in step T2: GArc, GBrb, and Sra
- In step T0, PC moves to MA over bus B and goes through the ALU INC4 operation to reach PC again by way of bus C
 - PC must be edge-triggered or master-slave
- Once more MA must be a transparent latch

Performance and Design

- How does going to three buses affect performance?
- Assume average CPI goes from 8 to 4, while τ increases by 10%:

$$\%Speedup = \frac{IC \times 8 \times \tau - IC \times 4 \times 1.1\tau}{IC \times 4 \times 1.1\tau} \times 100 = \frac{8 - 4.4}{4.4} \times 100 = 82\%$$