/[41 Chapter 4—Processor Desigrﬁ‘

Chapter 4: Processor Design

Topics

4.1 The Design Process

4.2 A 1-Bus Microarchitecture for the SRC
4.3 Data Path Implementation

4.4 Logic Design for the 1-Bus SRC

4.5 The Control Unit

4.6 The 2- and 3-Bus Processor Designs
4.7 The Machine Reset

4.8 Machine Exceptions

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[4-2

not “how”

\Computer Systems Design and Architecture by V. Heuring and H. Jordan

Abstract and Concrete Register
Transfer Descriptions

« The abstract RTN for SRC in Chapter 2 defines “what,”

« A concrete RTN uses a specific set of real registers and
buses to accomplish the effect of an abstract RTN statement

« Several concrete RTNs could implement the same ISA

Chapter 4—Processor Desigrﬁ‘

© 1997 V. Heuring and H. Jordan jj

/[4-3

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

Chapter 4—Processor Desigrﬁ

—

A Note on the Design Process

This chapter presents several SRC designs
We started in Chapter 2 with an informal description

In this chapter we will propose several block diagram
architectures to support the abstract RTN, then we will:

* Write concrete RTN steps consistent with the architecture
+ Keep track of demands made by concrete RTN on the hardware

Design data path hardware and identify heeded control
signals

Design a control unit to generate control signals

/(2.4 Chapter 4—Processor Desigrﬁ‘

Fig 4.1 Block Diagram of 1-Bus SRC

] —~
N i ng = T Figure 4.11
#
T
ontrol Unit 5 ;g g §
Contro¢l signals out Control unit inputs
0 31 0 <31{'O>
—3232-bit —| 32 31 0
[general —|
[purpose —|
—registers — Data Path Main Input/
memory output
R31
A A A
" :
AU To memory subsystem <« / / »
c <« MD |« Memory bus
—)
[Cc]
| \ FigureS 42, 4.3

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[25 Chapter 4—Processor Desigrﬁ‘

Fig 4.2 High-Level View of the 1-Bus
SRC Design

31 0 (31..0)
RO A
[3232-bit | 32 31 0
— general —j B e PC
| purpose __|
- registers €
R31
> IR
A
v I —> MA —>
A B
To memory subsystem —>»
ALU
c D S— MD B S
C
' >
\J

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan //

/[4-6 Chapter 4—Processor Desigrﬁ

Constraints Imposed by the
Microarchitecture

* One bus connecting most registers
allows many different RTs, but only one
at a time
31 0 (31..0)

* Memory address must be copiedinto ~[... 1 .} . .
MA by CPU - General - 4—.l PC |

| Purpose Registers |
 Memory data written from or read into
MD Aot

* First ALU operand always in A, resultI
goesto C

- Second ALU operand always comes "/ —»IT L
from bus ALU 0 memory subsystem

C

—

* Information only goes into IR and MA \
from bus S ——

- A decoder (not shown) interprets contents of
IR

- MA supplies address to memory, not to CPU
bus

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

// 4-7 Chapter 4—Processor Desigrﬁ

Abstract and Concrete RTN for SRC
add Instruction

Abstract RTN: (IR < M[PC]: PC < PC + 4; instruction_execution);
instruction_execution := (e«

—

add (:= op= 12) — R[ra] < R[rb] + R[rc]:

Tbl 4.1 Concrete RTN for the add @ 0o Guo

Instruction L G] B

Step RTN | F

TO MA <« PC: C < PC +4; o

T1 MD «— M[MA]: PC « C; — ["]

T2 IR < MD; A F L~ |

T3 A < R[rb]; Y : L ey N

T4 C % A + R[I’C]; IEX. \ M To memory subsystem —»

T5 R[ra] < C; —_ ™ }—
I

* Parts of 2 RTs (IR <~ M[PC]: PC < PC + 4;) done in TO
- Single add RT takes 3 concrete RTs (T3, T4, T5)

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

// 4-8

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

Chapter 4—Processor Desigrﬁ

Concrete RTN Gives Information About
Sub-units

—

 The ALU must be able to add two 32-bit values
 ALU must also be able to increment B input by 4

* Memory read must use address from MA and return data to
MD

 Two RTs separated by : in the concrete RTN, as in TO and
T1, are operations at the same clock

- Steps T0, T1, and T2 constitute instruction fetch, and will
be the same for all instructions

« With this implementation, fetch and execute of the add
instruction takes 6 clock cycles

/[4-9 Chapter 4—Processor Desigrﬁ

Concrete RTN for Arithmetic Instructions:

addi
Abstract RTN:
addi (:= op= 13) — R[ra] « R[rb] + c2(16..0
{2's complement signh extend}:

—

31 0 (31..0)

Concrete RTN for addi: oL em a2} . .
[Purpose Registers) L |

Step RTN T

TO. MA <« PC: C < PC +4; o

T1. MD <« M[MA]; PC « C; I 1 —

T2. IR < MD; Instr Fetch '

T3. A < R[rb]; Instr Execn.

T5. R[ra] <C: T

| A
A \/ L] VA ——
T4. C < A + c2(16..0) {sign ext.}; \ To memory subsystem —=
|

c |
i

 Differs from add only in step T4
- Establishes requirement for sign extend hardware

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[4-10

__ Figured4d A
} 31 0 | (31.0) 31 0
R } -« > PC |
T 3232-bit | T Ry~
| — general — | 32 | CON,, [P Q- CON |
| | purpose __| | | Cond | Figure 4.9
| | registers | ‘ _| logic \
| | A W
| | ' Op <4 '
| S, | Register select S — ¢3(2..0)
| R31 4—/4‘— o i -| Select logic| | \
————————————— > IR |
\ ' . | Figure 4.5
N f|> 77777777 \ |Select logic |
| A | 32, c131.0) | |
|

| 33, c2(31..0)

} To memory subsystem —>} Figure 4.6

<> MD |‘—’j

| > n n=0 | Figure 4.8
\f ****** e - | Decrement Shift count, n
Figure 4.7 - -

\Computer Systems Design and Architecture by V. Heuring and H. Jordan

Fig 4.3 More Complete View of Registers
and Buses in the 1-Bus SRC Design,
Including Some Control Signals

Chapter 4—Processor Desigrﬁ‘

« Concrete RTN
lets us add
detail to the
data path

— Instruction
register logic
and new paths

— Condition bit
flip-flop

— Shift count
register

Keep this slide in mind
as we discuss concrete
RTN of instructions.

© 1997 V. Heuring and H. Jordan jj

// 4-11 Chapter 4—Processor Desigrﬁ

Abstract and Concrete RTN for
Load and Store

—

Id (:= op= 1) — R[ra] « M[disp] :
st (:= op= 3) —» M[disp] < R[ra] :
where
disp(31..0) := ((rb=0) —» ¢216..0) {sign ext.} :
(rb+0) — R[rb] + c2(16..0 {sign extend, 2's comp.}) :

Tbl 4.3 The Id and St (load/store register from memory) Instructions

Step RTN for Id RTN for st
TO-T2 Instruction fetch

T3 A<~ (rb=0—0: rb#0— R[rb]);
T4 C «— A + (16@IR(16)#IR(15..0);

T5 MA < C;

T6 MD < M[MA]; MD < RJra];
T7 R[ra] < MD; M[MA] < MD;

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[4-12 Chapter 4—Processor Desigrﬁ‘

Notes for Load and Store RTN

- Steps TO through T2 are the same as for add and addi,
and for all instructions

 In addition, steps T3 through T5 are the same for Id
and st, because they calculate disp

A way is needed to use 0 for R[rb] whenrb =0
« 15-bit sign extension is needed for IR(16..0)

 Memory read into MD occurs at T6 of Id
« Write of MD into memory occurs at T7 of st

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[4-13 Chapter 4—Processor Desigrﬁ

—

Concrete RTN for Conditional Branch

br (:= op= 8) —» (cond —» PC < R[rb]):

cond :=(¢3¢(2..0=0 — O: hever
c3(2..00=1 — 1: always
c3¢(2..0=2 — R][rc]=0: if register is zero
c3(2..0=3 — R[rc]+O0: if register is nonzero

c3¢(2..00=4 — R[rc](31)=0: if positive or zero
c3(2..00=5 — R[rc](31)=1): if negative

Tbl 4.4 The Branch Instruction, br

Step RTN

TO-T2 Instruction fetch

T3 CON < cond(R[rc]);
T4 CON — PC < R[rb];

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[4-14

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

Chapter 4—Processor Desigrﬁ

—

Notes on Conditional Branch RTN

« ¢3(2..0) are just the low-order 3 bits of IR

« cond() is evaluated by a combinational logic circuit
having inputs from R[rc] and ¢3(2..0)

« The one bit register CON is not accessible to the
programmer and only holds the output of the
combinational logic for the condition

 If the branch succeeds, the program counter is
replaced by the contents of a general register

// 4-15 Chapter 4—Processor Desigrﬁ

Abstract and Concrete RTN for SRC Shift
Right

—

shr (:= op = 26) — R[ra]@31..0) < (n @ 0) # R[rb]@31..n):
n:=((c34..0)= 0) — R[rc]@..0) : Shift count in register
(c34..0)~ 0) —» ¢c34..0)): or constant field of

instruction
Tbl 4.5 The shr Instruction

Step Concrete RTN
TO0-T2 Instruction fetch
T3 n < IR(4..0);
T4 (n =0) — (n < R[rc]4..0);
T5 C < R[rb];
— T6 Shr (:=(n#0) - (C31..00 < 0#C(31..1): n < n-1; Shr));
T7 R[ra] < C;

step T6 is repeated n times

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

