
Introduction to VHDL

Yvonne Avilés
Colaboration: Irvin Ortiz Flores

Rapid System Prototyping Laboratory (RASP)
University of Puerto Rico at Mayaguez

What is VHDL?
Very High Speed Integrated Circuit Hardware
Description Language
A programming language designed and optimized for
describing the behavior of digital systems.
Allows for automatic circuit synthesis and system
simulation.
A standard in the electronic design community.

IEEE Standard 1076 defines the complete VHDL
language
The IEEE 1076-1987 and IEEE 1164 standards
together form the complete VHDL standard in widest
use today

Entities and Architectures

Every VHDL design description consists of at least
one entity/architecture pair.
A VHDL entity is a statement that defines the
external specification of a circuit or sub-circuit.
Provides the complete interface for a circuit

Names, data types, direction of ports

entity compare is
port(A, B: in bit_vector(0 to 7);

EQ: out bit);
end compare;

Architecture Declaration
Every referenced entity in a VHDL design description must be
bound with a corresponding architecture.
The architecture describes the actual function—or contents—of
the entity to which it is bound.

architecture compare1 of compare is
begin

EQ <= ‘1’ when (A = B) else ‘0’;
end compare1;

Hierarchy and subprogram features of the language allow lower-
level components, subroutines and functions in architectures; a
process allows complex registered sequential logic as well.
VHDL allows more than one alternate architecture for an entity.

VHDL Architecture Structure

architecture name_arch of entity is

begin

end name_arch;

Signal assignments

Concurrent statements

Concurrent statements

Process 1

Process 2

Concurrent statements

Processes contain sequential
statements, but execute
concurrently within the

architecture body

VHDL Process Syntax

P1: process (<sensitivity list>)
<variable declarations>
begin

<sequential statements>
end process P1;

Within a process: Variables are assigned using :=
and are updated immediately. Signals are assigned
using <= and are updated at the end of the process.

Signals Vs Variables

Signals
Used to connect
components or to carry
information between
processes

When inside of a process,
its value is updated when
the process suspends

Signal assignment
operator: <=

Variables
Local to a process

Not visible outside
the process

Values are updated
immediately after the
assignment

Variable assignment
operator: :=

Signals Vs Variables

Signals
Initial values: A=5,
X=10, B=15
Final values: A=10,
B=5

Sigproc:
process(A,X)

Begin
A <= X;
B <= A;

End process Sigproc;

Variables
Initial values: X=10
Final values: A=10,
B=10

Sigproc: process(X)
Variable A,B :
integer;

Begin
A := X;
B := A;

End process Sigproc;

Data Types
Like a high-level software programming language, data is
represented in terms of high-level data types.
Every data type in VHDL has a defined set of values and valid
operations.

Data Type Values Example

Bit ‘1’,‘0’ Q<=‘1’;
Bit_vector (array of bits) DataOut <= "00010101";
Boolean True, False EQ <= True;
Integer -2, -1, 0, 1, 2, 3, 4 . . . Count <= Count + 2;
Real 1.0, -1.0E5 V1 = V2 / 5.3
Time 1 ua, 7 ns, 100 ps Q <= ‘1’ after 6 ns;
Character ‘a’, ‘b’, ‘2, ‘$’, etc. CharData <= ‘X’;
String (Array of characters) Msg <= "MEM: " & Addr

Design Units

Entity : Interface
Architecture : Implementation, behavior, function
Configuration : Model chaining, structure, hierarchy
Process : Concurrency, event controlled
Package : Modular design, standard solution, data
types, constants
Library : Compilation, object code

Levels of Abstraction
Behavior

Relies on processes to implement sequential
statements

Dataflow
Describe circuit in terms of how data moves through
the system.
Also referred to as register transfer logic, or RTL.

Structure
Used to describe a circuit in terms of its components
Requires hierarchical constructs

Mixed Method
Any combination of methods

Entity Declaration

Specifies the unit' s
ports

States the port's name
type, mode

Ports can be in, out or
inout

Port size can be from a
bit to a bit vector

Adder

A

Cin

B

Sum

Cout

Entity name

Port names Port mode Port type

Port length

Entity Adder is
port (A,B : in std_logic(4 downto 0);

Cin : in std_logic;
Sum : out std_logic(4 downto 0);

Cout : out std_logic);
End Adder;

An Architecture Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.all;

Entity Adder is
port (A,B : in std_logic_vector(4 downto 0);

Cin : in std_logic;
Sum : out std_logic_vector(4 downto 0);

Cout : out std_logic);
End Adder;

architecture a_adder of adder is

signal AC,BC,SC : std_logic_vector(5 downto 0);

begin
AC <='0' & A;
BC <='0' & B;
SC <= unsigned(AC) + unsigned(BC) + Cin;
Cout <= SC(5);
Sout <= SC(4 downto 0);

end a_adder;

Concurrent Statements:Processed
at the same time. Also component
instantiations, and processes can
be placed.

Signal declaration. Also can be
placed component, constants,
types, declarations.

Architecture declaration

Associated entity

Library declaration section

A “D” Flip-Flop

Explicit comparations and assigments
to port and signals uses ‘ ’ for one bit
and “ ” for multiple bits

Refers to the rising edge of the clock

entity dff is
port (d,clock : in bit;

q: out bit);
end dff;

architecture arch of dff is
begin

process (clock)
begin

if(clock'event and
clock=1) then

if(d=‘1’) then
q <= ‘1’;

else
q <= ‘0’;

end if;
end if;

end process;
end arch;

D Flip-Flop Behavioral
--Active low preset and clear inputs
entity dffpc2 is

port(d,clock,clrn,prn:in bit;
q,qbar:out bit;

end dffpc2;

architecture arch of dffpc2 is
begin

process(clock,clrn,prn)
begin
if(clock’event and clock =
‘1’) then

q <= not prn or (clrn and
d);

qbar <= prn and (not clrn
or not d);

end if;
end process;

end arch;

D Flip-Flop Dataflow
--D flip-flop dataflow
--Includes preset and clear
entity dff_flow is

port (d, prn, clrn: in bit;
q,qbar: out bit);

end dff_flow;

architecture archl of dff_flow is
begin

q <= not prn or (clrn and d);
qbar <= prn and (not clrn or not
d);

end archl;

D Flip-Flop Structural

--A two input nand gate
entity nandtwo is

port(x, y:in bit;
z :out bit);

end nandtwo;
architecture anandtwo of nandtwo
is
begin

z <= not(x and y);
end anandtwo;

Component instantiation. Conections are made
by correspondence

Component
declaration.
Port appears
exactly as in
the entity
declaration.

Component
instantiation
label

Entity name

entity dff_str is
port (d :in bit;

q,qbar:out bit);
end dff_str;

architecture adff_str of dff_str is
component nandtwo

port(x, y: in bit;
z:out bit);

end component;
signal qbarinside, qinside, dbar: bit;
begin

nandq:nandtwo
port map(qinside, d,qbarinside);

nandqbar:nandtwo
port map(qbarinside,dbar, qinside);

dbar <= not d;
q <= qinside;
qbar <= qbarinside;

end adff_str;

qinside

nandq:nandtwo

nandqbar:nandtwo

qbarinside

dbar

d qbar

q

Three-Bit Binary Counter
entity countl is

port(clock, enable: in bit;
qa: out integer range 0 to 7);

end countl;

architecture countarch of countl is
begin

process (clock)
variable count: integer range 0 to 7;
begin

if (clock’event and clock ='1') then
if enable = '1' then

count:=count + 1;
end if;

end if;
qa <= count after 10 ns;

end process;
end countarch;

Sensitivity list. Process is executed
everytime one of this parameters
change.

Variable declaration

Sequential statements.

Variable assignment operator

Signal assignment operator

D Flip-Flop with
Asynchronous Preset and Clear

Integer range definition. Range 0
to 1 defines one bit.

entity dffapc is
port(clock, d, prn, clrn : in bit;

q : out bit);
end dffapc;
architecture archl of dffapc is
begin

process(clock, clrn, prn)
variable reset, set: integer range 0 to
1;
begin

if(prn=‘0’) then
q <= ‘1’;

elsif (clrn=‘0’) then
q <= ‘0’;

elsif (clock’event and
clock=‘1’) then

q <= d;
end if;

end process;
end archl;

Four Bit Adder

Integer type allows addition,
subtraction and multiplication. Need
the following statement at the library
declaration section:

use IEEE.STD_LOGIC_ARITH.all

--A VHDL 4 bit adder
entity fourbadd is

port (cin: in integer range 0 to 1;

addendl:in integer range 0
to 15;

addend2:in integer range 0
to 15;

sum: out integer range 0 to
31);

end fourbadd;
architecture a4bitadd of fourbadd is
begin

sum <= addendl + addend2 + cin;
end a4bitadd;

Synthesis

Synthesis is a process of translating an
abstract concept into a less-abstract form.
The highest level of abstraction accepted by
today’s synthesis tools is the dataflow level.

Display Driver

state_mach

fsm

clk
reset

[1:0]stat[1:0]

bcd

conv

[3:0] inbcd[3:0] [6:0]outled[6:0]

mux

selector

[3:0] digit0[3:0]
[3:0] digit2[3:0]
[3:0] digit1[3:0]
[3:0] digit3[3:0]
[1:0] selec[1:0]

[3:0]muxout[3:0] datout[6:0][6:0]

selec[1:0][1:0]

reset
clk

d3[3:0] [3:0]
d2[3:0] [3:0]
d1[3:0] [3:0]

d0[3:0] [3:0]

State Machine

stat[1:0]

R

[1:0]Q[1:0][1:2] D[1:0]

un3_count_int[1:2]
+

[1:0]
[1:2]

1
selec[1:0][1:0]

reset

clk

Data Selector

muxout[3:0]

e
d

e
d

e
d

e
d

[3:0]

[3:0]
[3:0]

[3:0]

[3:0]

un22_muxout

[1]

un9_muxout

[0]
[1]

un3_muxout

[0]
[1]

un1_muxout

[0]
[1]

interbit[3:0][3:0]

selec[1:0] [1:0]

d3[3:0] [3:0]
d1[3:0] [3:0]
d2[3:0] [3:0]

d0[3:0] [3:0]

Test Benches
VHDL can capture
performance specification for
a circuit, in the form of a test
bench.
Test benches are VHDL
descriptions of circuit stimuli
and corresponding expected
outputs that verify the
behavior of a circuit over
time. Test benches should
be an integral part of any
VHDL project and should be
created in tandem with other
descriptions of the circuit.

DUT

Test
Bench

Questions?

Link for VHDL Tutorial

http://www.aldec.com/Downloads/

