
2-1 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 2: Machines, Machine
Languages, and Digital Logic

Topics

2.1 Classification of Computers and Their Instructions
2.2 Computer Instruction Sets
2.3 Informal Description of the Simple RISC Computer,

SRC
2.4 Formal Description of SRC Using Register Transfer

Notation, RTN
2.5 Describing Addressing Modes with RTN
2.6 Register Transfers and Logic Circuits: From

Behavior to Hardware

2-2 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

What Are the Components of an ISA?
• Sometimes known as The Programmer’s Model of the machine
• Storage cells

• General and special purpose registers in the CPU
• Many general purpose cells of same size in memory
• Storage associated with I/O devices

• The machine instruction set
• The instruction set is the entire repertoire of machine operations
• Makes use of storage cells, formats, and results of the fetch/

execute cycle
• i.e., register transfers

• The instruction format
• Size and meaning of fields within the instruction

• The nature of the fetch-execute cycle
• Things that are done before the operation code is known

2-3 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig. 2.1 Programmer’s Models of
Various Machines

We saw in Chap. 1 a variation in number and type of storage cells

216 bytes

of main

memory

capacity

Fewer

 than 100

instructions

7

15

A

216 – 1

B

IX

SP

PC

0

12 general

purpose

registers

More than 300

instructions

More than 250

instructions

More than 120

instructions

232 – 1

252 – 1

0

PSW

Status

R0

PC

R11

AP

FP

SP

0 31 0

32

64-bit

floating point

registers

(introduced 1993)(introduced 1981)(introduced 1975) (introduced 1979)

0

31

0 63

32 32-bit

general

purpose

registers

0

31

0 31

More than 50

32-bit special

purpose

registers

0 31

252 bytes

of main

memory

capacity

0

M6800 VAX11 PPC601

220 – 1

AX

BX

CX

DX

SP

BP

SI

DI

15 7 08

IP

Status

Address

and

count

registers

CS

DS

SS

ES

Memory

segment

registers

220 bytes

of main

memory

capacity

0

I8086

232 bytes

of main

memory

capacity

Data

registers6 special

purpose

registers

2-4 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

• Which operation to perform add r0, r1, r3
• Ans: Op code: add, load, branch, etc.

• Where to find the operand or operands add r0, r1, r3
• In CPU registers, memory cells, I/O locations, or part of

instruction
• Place to store result add r0, r1, r3

• Again CPU register or memory cell
• Location of next instruction add r0, r1, r3

br endloop
• Almost always memory cell pointed to by program counter—PC

• Sometimes there is no operand, or no result, or no next instruction.
Can you think of examples?

What Must an Instruction Specify?

Data Flow

2-5 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Instructions Can Be Divided into
3 Classes

• Data movement instructions
• Move data from a memory location or register to another

memory location or register without changing its form
• Load—source is memory and destination is register
• Store—source is register and destination is memory

• Arithmetic and logic (ALU) instructions
• Change the form of one or more operands to produce a result

stored in another location
• Add, Sub, Shift, etc.

• Branch instructions (control flow instructions)
• Alter the normal flow of control from executing the next

instruction in sequence
• Br Loc, Brz Loc2,—unconditional or conditional branches

2-6 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 2.1 Examples of Data Movement
Instructions

• Lots of variation, even with one instruction type

Instruction Meaning Machine

MOV A, B Move 16 bits from memory location A to VAX11
Location B

LDA A, Addr Load accumulator A with the byte at memory M6800
location Addr

lwz R3, A Move 32-bit data from memory location A to PPC601
register R3

li $3, 455 Load the 32-bit integer 455 into register $3 MIPS R3000

mov R4, dout Move 16-bit data from R4 to output port dout DEC PDP11

IN, AL, KBD Load a byte from in port KBD to accumulator Intel Pentium

LEA.L (A0), A2 Load the address pointed to by A0 into A2 M6800

2-7 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 2.2 Examples of ALU
Instructions

Instruction Meaning Machine
MULF A, B, C multiply the 32-bit floating point values at VAX11

mem loc’ns. A and B, store at C
nabs r3, r1 Store abs value of r1 in r3 PPC601
ori $2, $1, 255 Store logical OR of reg $ 1 with 255 into reg $2 MIPS R3000
DEC R2 Decrement the 16-bit value stored in reg R2 DEC PDP11
SHL AX, 4 Shift the 16-bit value in reg AX left by 4 bit pos’ns. Intel 8086

• Notice again the complete dissimilarity of both syntax and semantics.

2-8 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 2.3 Examples of Branch
Instructions

Instruction Meaning Machine
BLSS A, Tgt Branch to address Tgt if the least significant VAX11

bit of mem loc’n. A is set (i.e. = 1)
bun r2 Branch to location in R2 if result of previous PPC601

floating point computation was Not a Number (NAN)
beq $2, $1, 32 Branch to location (PC + 4 + 32) if contents MIPS R3000

of $1 and $2 are equal
SOB R4, Loop Decrement R4 and branch to Loop if R4 ≠ 0 DEC PDP11
JCXZ Addr Jump to Addr if contents of register CX ≠ 0. Intel 8086

2-9 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

CPU Registers Associated with Flow of
Control—Branch Instructions

• Program counter usually locates next instruction
• Condition codes may control branch
• Branch targets may be separate registers

Processor State

C N V Z

Program Counter

Branch Targets

Condition Codes
•
•
•

2-10 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

HLL Conditionals Implemented by
Control Flow Change

• Conditions are computed by arithmetic instructions
• Program counter is changed to execute only instructions

associated with true conditions

C language Assembly language

if NUM==5 then SET=7
 CMP.W #5, NUM
 BNE L1
 MOV.W #7, SET
L1 ...

;the comparison
;conditional branch
;action if true
;action if false

2-11 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

CPU Registers May Have a
“Personality”

• Architecture classes are often based on how where the
operands and result are located and how they are specified
by the instruction.

• They can be in CPU registers or main memory:

Top
Second

Stack Arithmetic
Registers

Address
Registers

General Purpose
Registers

Push Pop

•
•
•

•
•
•

•
•
••

•
•

Stack Machine Accumulat or Machine General Regist er
Machine

2-12 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

3-, 2-, 1-, & 0-Address ISAs
• The classification is based on arithmetic instructions that have

two operands and one result
• The key issue is “how many of these are specified by memory

addresses, as opposed to being specified implicitly”
• A 3-address instruction specifies memory addresses for both

operands and the result R ← Op1 op Op2
• A 2-address instruction overwrites one operand in memory with

the result Op2 ← Op1 op Op2
• A 1-address instruction has a processor, called the accumulator

register, to hold one operand & the result (no addr. needed)
Acc ← Acc op Op1

• A 0-address + uses a CPU register stack to hold both operands
and the result TOS ← TOS op SOS (where TOS is Top Of Stack,
SOS is Second On Stack)

• The 4-address instruction, hardly ever seen, also allows the
address of the next instruction to specified explicitly

2-13 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.2 The 4-Address Machine and
Instruction Format

• Explicit addresses for operands, result, & next instruction
• Example assumes 24-bit addresses

• Discuss: size of instruction in bytes

Memory

Op1Addr:
Op2Addr:

Op1
Op2

ResAddr:

NextiAddr:

Bits: 8 24 24

Instruction format

24 24

Res

Nexti

CPU add, Res, Op1, Op2, Nexti (Res ← Op1 + Op2)

add ResAddr Op1Addr Op2Addr NextiAddr
Which

operation
Where to

put result Where to find operands

Where to find

next instruction

2-14 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.3 The 3-Address Machine and
Instruction Format

• Address of next instruction kept in processor state register—
the PC (except for explicit branches/jumps)

• Rest of addresses in instruction
• Discuss: savings in instruction word size

Memory

Op1Addr:
Op2Addr:

Op1

Program

counter

Op2

ResAddr:

NextiAddr:

Bits: 8 24 24

Instruction format

24

Res

Nexti

CPU

Where to find

next instruction

24

add, Res, Op1, Op2 (Res ← Op2 + Op1)

add ResAddr Op1Addr Op2Addr
Which

operation
Where to

put result Where to find operands

2-15 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.4 The 2-Address Machine and
Instruction Format

• Result overwrites Operand 2
• Needs only 2 addresses in instruction but less choice in

placing data

Memory

Op1Addr:

Op2Addr:

Op1

Program

counter

Op2,Res

NextiNextiAddr:

Bits: 8 24 24

Instruction format

CPU

Where to find

next instruction

24

add Op2, Op1 (Op2 ← Op2 + Op1)

add Op2Addr Op1Addr
Which

operation

Where to

put result

Where to find operands

2-16 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.5 1-Address Machine and
Instruction Format

• Special CPU register, the accumulator,
supplies 1 operand and stores result

• One memory address used for other operand

Need instructions to load
and store operands:
LDA OpAddr
STA OpAddr

Memory

Op1Addr: Op1

Nexti
Program

counter

Accumulator

NextiAddr:

Bits: 8 24

Instruction format

CPU

Where to find

next instruction

24

add Op1 (Acc ← Acc + Op1)

add Op1Addr
Which

operation
Where to find

operand1

Where to find

operand2, and

where to put result

2-17 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.6 The 0-Address, or Stack,
Machine and Instruction Format

• Uses a push-down stack in CPU
• Arithmetic uses stack for both operands and the result
• Computer must have a 1-address instruction to push and pop

operands to and from the stack

Memory

Op1Addr:

TOS

SOS

etc.

Op1

Program

counter

NextiAddr: Nexti

Bits:

Format

Format

8 24

CPU

Where to find

next instruction

Stack

24

push Op1 (TOS ← Op1)

Instruction formats

add (TOS ← TOS + SOS)

push Op1Addr
Operation

Bits: 8

add
Which operation

Result

Where to find operands,

and where to put result

(on the stack)

2-18 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example 2.1 Expression Evaluation for
3-, 2-, 1-, and 0-Address Machines

• Number of instructions & number of addresses both vary
• Discuss as examples: size of code in each case

3 - a d d r e s s 2 - a d d r e s s 1 - a d d r e s s S t a c k

add a, b, c
mpy a, a, d
sub a, a, e

load a, b
add a, c
mpy a, d
sub a, e

load b
add c
mpy d
sub e
store a

push b
push c
add
push d
mpy
push e
sub
pop a

Evaluat e a = (b+c)*d - e

2-19 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.7 General Register Machine and
Instruction Formats

• It is the most common choice in today’s general-purpose computers
• Which register is specified by small “address” (3 to 6 bits for 8 to 64

registers)
• Load and store have one long & one short address: 1-1/2 addresses
• Arithmetic instruction has 3 “half” addresses

Memory

Op1Addr: Op1
load

Nexti Program

counter

load R8, Op1 (R8 ← Op1)

CPU

Registers

R8

R6

R4

R2

Instruction formats

R8load Op1Addr

add R2, R4, R6 (R2 ← R4 + R6)

R2add R6R4

2-20 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Real Machines Are Not So Simple

• Most real machines have a mixture of 3, 2, 1, 0, and 1-1/2
address instructions

• A distinction can be made on whether arithmetic
instructions use data from memory

• If ALU instructions only use registers for operands and
result, machine type is load-store

• Only load and store instructions reference memory
• Other machines have a mix of register-memory and

memory-memory instructions

2-21 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Addressing Modes

• An addressing mode is hardware support for a useful way of
determining a memory address

• Different addressing modes solve different HLL problems
• Some addresses may be known at compile time, e.g., global

variables
• Others may not be known until run time, e.g., pointers
• Addresses may have to be computed. Examples include:

• Record (struct) components:
• variable base (full address) + constant (small)

• Array components:
• constant base (full address) + index variable (small)

• Possible to store constant values w/o using another memory
cell by storing them with or adjacent to the instruction itself

2-22 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

HLL Examples of Structured Addresses

• C language: rec → count
• rec is a pointer to a record: full address variable
• count is a field name: fixed byte offset, say 24

• C language: v[i]
• v is fixed base address of array: full address

constant
• i is name of variable index: no larger than array size

• Variables must be contained in registers or memory
cells

• Small constants can be contained in the instruction
• Result: need for “address arithmetic.”

• E.g., Address of Rec → Count is address of
Rec + offset of count.

Rec →

Count

V →

V[i]

2-23 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.8 Common Addressing Modes

3Op'nInstr

LOAD #3,

a) Immediate Addressing
(Instruction contains the operand.)

Addr of A
Operand

Memory

Op'nInstr

b) Direct Addressing
(Instruction contains
address of operand)

LOAD A, ...

Address of address of A

Operand Addr

Memory

Op'nInstr

c) Indirect Addressing
(Instruction contains
address of address

of operand)

LOAD (A), ...

Operand

Operand

Memory
Op'nInstr

d) Register Indirect Addressing
(register contains address of operand)

LOAD [R2], ...

R2 . . .

R2 Operand Addr.

Operand

Memory
Op'nInstr

e) Displacement (Based) (Indexed) Addressing
(address of operand = register +constant)

LOAD 4[R2], ...

R2 4

Operand Addr.

+

R2 PC

Operand

Memory
Op'n

f) Relative Addressing
(Address of operand = PC+constant)

LOADRel 4[PC], ...

4

Operand Addr.

+

Instr

2-24 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example: Computer, SRC
Simple RISC Computer

• 32 general purpose registers of 32 bits
• 32-bit program counter, PC, and instruction register, IR
• 232 bytes of memory address space

R0

R31

PC

IR

The SRC CPU Main memory

31 70 0

0

R[7] means contents

of register 7

M[32] means contents

of memory location 32232 – 1

32 32-bit

general

purpose

registers

232

bytes

of

main

memory

2-25 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

SRC Characteristics

• Load-store design: only way to access memory is through load
and store instructions

• Only a few addressing modes are supported
• ALU instructions are 3-register type
• Branch instructions can branch unconditionally or

conditionally on whether the value in a specified register is = 0,
<> 0, >= 0, or < 0

• Branch and link instructions are similar, but leave the value of
current PC in any register, useful for subroutine return

• All instructions are 32 bits (1 word) long

2-26 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

SRC Basic Instruction Formats

• There are three basic instruction format types
• The number of register specifier fields and length of the

constant field vary
• Other formats result from unused fields or parts
• Details of formats on next slide

31 27 26 22 21 0

31 27

27

26

26

22

22

21

2131

17 16

17 16 12 11

0

0

op r a

rb

r crb

r a

r a

op

op

c1

c2

c3

Type 1

Type 2

Type 3

2-27 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.9
(Partial)

Total of 7
Detailed
Formats

Op
1. Id, st, la,

addi, andi, ori rb c2

Instruction formats Example

31 27 26 22 21 17 16 0
Id r3, A

Id r3, 4(r5)

addi r2, r4, #1

(R[3] = M[A])

(R[3] = M[R[5] + 4])

 (R[2] = R[4] +1)

ra

Op2. Idr, str, lar c1
31 2726 22 21 0 Idr r5, 8

Iar r6, 45
(R[5] = M[PC + 8])

(R[6] = PC + 45)ra

Op3. neg, not unused
31 27 26 22 21 17 16 0

neg r7, r9 (R[7] = – R[9])ra

unused

rc

Op4. br unused
31 27 26 22 21 17 1216 11 2 0 brzr r4, r0

(branch to R[4] if R[0] == 0)rb rc (c3) Cond

Op5. brl unused
31 27 26 22 21 17 16 0 brlnz r6, r4, r0

(R[6] = PC; branch to R[4] if R[0] ≠ 0)ra rb rc
1211 2

Cond

(c3)Op unused
31 27 26 22 21 17 16 0 shl r2, r4, r6

(R[2] = R[4] shifted left by count in R[6])ra rb rc
12 4

4

00000

(c3)Op
7. shr, shra

shl, shic

unused
31 27 26 22

7a

7b

21 17 0 shr r0, r1, #4

(R[0] = R[1] shifted right by 4 bitsra rb

2
Count

Op6. add, sub,

and, or

unused
31 27 26 22 21 17 16 0

add r0, r2, r4 (R[0] = R[2] + R[4])ra rb rc
1211

Op8. nop, stop unused
31 27 0

stop
26

unused

(c3)

(c3)

(c3)

2-28 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 2.4 Example SRC Load and Store
Instructions

• Address can be constant, constant + register, or constant + PC
• Memory contents or address itself can be loaded

(note use of la to load a constant)

Instruction op ra rb c1 Meaning Addressing Mode
ld r1, 32 1 1 0 32 R[1] ← M[32] Direct
ld r22, 24(r4) 1 22 4 24 R[22] ← M[24+R[4]] Displacement
st r4, 0(r9) 3 4 9 0 M[R[9]] ← R[4] Register indirect
la r7, 32 5 7 0 32 R[7] ← 32 Immediate
ldr r12, -48 2 12 – -48 R[12] ← M[PC -48] Relative
lar r3, 0 6 3 – 0 R[3] ← PC Register (!)

2-29 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Assembly Language Forms of
Arithmetic and Logic Instructions

• Immediate subtract not needed since constant in addi
may be negative

Format Example Meaning
neg ra, rc neg r1, r2 ;Negate (r1 = -r2)
not ra, rc not r2, r3 ;Not (r2 = r3´)
add ra, rb, rc add r2, r3, r4 ;2’s complement addition
sub ra, rb, rc ;2’s complement subtraction
and ra, rb, rc ;Logical and
or ra, rb, rc ;Logical or
addi ra, rb, c2 addi r1, r3, #1 ;Immediate 2’s complement add
andi ra, rb, c2 ;Immediate logical and
ori ra, rb, c2 ;Immediate logical or

2-30 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Branch Instruction Format
There are actually only two branch instructions:
br rb, rc, c3<2..0> ; branch to R[rb] if R[rc] meets

; the condition defined by c3<2..0>
brl ra, rb, rc, c3<2..0> ; R[ra] ← PC; branch as above

lsbs condition Assy language form Example
000 never brlnv brlnv r6
001 always br, brl br r5, brl r5
010 if rc = 0 brzr, brlzr brzr r2, r4, r5
011 if rc ≠ 0 brnz, brlnz
100 if rc ≥ 0 brpl, brlpl
101 if rc < 0 brmi, brlmi

• It is c3<2..0>, the 3 lsbs of c3, that governs what the branch condition is:

• Note that branch target address is always in register R[rb].
•It must be placed there explicitly by a previous instruction.

2-31 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Tbl 2.6 Forms and Formats of the
br and brl Instructions

Ass’y
lang.

Example instr. Meaning op ra rb rc c3
〈2..0〉

Branch
Cond’n.

brlnv brlnv r6 R[6] ← PC 9 6 — — 000 never
br br r4 PC ← R[4] 8 — 4 — 001 always
brl brl r6,r4 R[6] ← PC;

PC ← R[4]

9 6 4 — 001 always

brzr brzr r5,r1 if (R[1]=0)
PC ← R[5]

8 — 5 1 010 zero

brlzr brlzr r7,r5,r1 R[7] ← PC; 9 7 5 1 010 zero
brnz brnz r1, r0 if (R[0]≠0) PC← R[1] 8 — 1 0 011 nonzero
brlnz brlnz r2,r1,r0 R[2] ← PC;

if (R[0]≠0) PC← R[1]

9 2 1 0 011 nonzero

brpl brpl r3, r2 if (R[2]≥0) PC← R[3] 8 — 3 2 100 plus
brlpl brlpl r4,r3,r2 R[4] ← PC;

if (R[2]≥0) PC← R[3]

9 4 3 2 plus

brmi brmi r0, r1 if (R[1]<0) PC← R[0] 8 — 0 1 101 minus
brlmi brlmi r3,r0,r1 R[3] ← PC;

if (r1<0) PC← R[0]

9 3 0 1 minus

2-32 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Branch Instructions—Example

C: goto Label3

SRC:
 lar r0, Label3 ; put branch target address into tgt

reg.
br r0 ; and branch

 • • •

Label3 • • •

2-33 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example of Conditional Branch

in C: #define Cost 125
if (X<0) then X = -X;

in SRC:
Cost .equ 125 ;define symbolic constant

.org 1000 ;next word will be loaded at address
100010

X: .dw 1 ;reserve 1 word for variable X
.org 5000 ;program will be loaded at location

500010

lar r0, Over ;load address of “false” jump location
ld r1, X ;load value of X into r1
brpl r0, r1 ;branch to Else if r1≥0
neg r1, r1 ;negate value

Over: • • • ;continue

2-34 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN (Register Transfer Notation)

• Provides a formal means of describing machine
structure and function

• Is at the “just right” level for machine descriptions
• Does not replace hardware description languages
• Can be used to describe what a machine does (an

abstract RTN) without describing how the machine
does it

• Can also be used to describe a particular hardware
implementation (a concrete RTN)

2-35 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN (cont’d.)

• At first you may find this “meta description” confusing,
because it is a language that is used to describe a
language

• You will find that developing a familiarity with RTN will
aid greatly in your understanding of new machine
design concepts

• We will describe RTN by using it to describe SRC

2-36 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Some RTN Features—
Using RTN to Describe a Machine’s

Static Properties

 Static Properties
• Specifying registers

• IR〈31..0〉 specifies a register named “IR” having 32 bits
numbered 31 to 0

• “Naming” using the := naming operator:
• op〈4..0〉 := IR〈31..27〉 specifies that the 5 msbs of IR be

called op, with bits 4..0
• Notice that this does not create a new register, it just

generates another name, or “alias,” for an already existing
register or part of a register

2-37 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Using RTN to Describe
Dynamic Properties

 Dynamic Properties
• Conditional expressions:

(op=12) → R[ra] ← R[rb] + R[rc]: ; defines the add instruction

“if” condition “then” RTN Assignment Operator

This fragment of RTN describes the SRC add instruction. It says,
 “when the op field of IR = 12, then store in the register specified
 by the ra field, the result of adding the register specified by the
 rb field to the register specified by the rc field.”

2-38 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Using RTN to Describe the SRC (Static)
Processor State

Processor state
 PC〈31..0〉: program counter

 (memory addr. of next inst.)
 IR〈31..0〉: instruction register
 Run: one bit run/halt indicator
 Strt: start signal
 R[0..31]〈31..0〉: general purpose registers

2-39 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Register Declarations

• General register specifications shows some features of
the notation

• Describes a set of 32 32-bit registers with names R[0] to
R[31]

R[0..31]〈31..0〉:
Name of
registers

Register #
in square
brackets

.. specifies
a range of
indices

msb #

lsb# Bit # in
angle
brackets

Colon separates
statements with
no ordering

2-40 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Memory Declaration:
RTN Naming Operator

• Defining names with formal parameters is a powerful
formatting tool

• Used here to define word memory (big-endian)

Main memory state
 Mem[0..232 - 1]〈7..0〉: 232 addressable bytes of memory
 M[x]〈31..0〉:= Mem[x]#Mem[x+1]#Mem[x+2]#Mem[x+3]:

Dummy
parameter

Naming
operator

Concatenation
operator

All bits in
register if no
bit index given

2-41 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Instruction Formatting Uses
Renaming of IR Bits

Instruction formats
 op〈4..0〉 := IR〈31..27〉: operation code field
 ra〈4..0〉 := IR〈26..22〉: target register field
 rb〈4..0〉 := IR〈21..17〉: operand, address index, or
 branch target register
 rc〈4..0〉 := IR〈16..12〉: second operand, conditional
 test, or shift count register
 c1〈21..0〉 := IR〈21..0〉: long displacement field
 c2〈16..0〉 := IR〈16..0〉: short displacement or
 immediate field
 c3〈11..0〉 := IR〈11..0〉: count or modifier field

2-42 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Specifying Dynamic Properties of SRC:
RTN Gives Specifics of Address

Calculation

• Renaming defines displacement and relative addresses
• New RTN notation is used

• condition → expression means if condition then
expression

• modifiers in { } describe type of arithmetic or how short
numbers are extended to longer ones

• arithmetic operators (+ - * / etc.) can be used in expressions
• Register R[0] cannot be added to a displacement

Effective address calculations (occur at runtime):

disp〈31..0〉 := ((rb=0) → c2 〈16..0〉 {sign extend}: displacement
(rb≠0) → R[rb] + c2〈16..0 〉 {sign extend, 2’s comp.}): address

rel〈31..0〉 := PC〈31..0〉 + c1〈21..0 〉 {sign extend, 2’s comp.}: relative
address

2-43 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Detailed Questions Answered by the
RTN for Addresses

• What set of memory cells can be addressed by direct
addressing (displacement with rb=0)

• If c2〈16〉=0 (positive displacement) absolute
addresses range from 00000000H to 0000FFFFH

• If c2〈16〉=1 (negative displacement) absolute
addresses range from FFFF0000H to FFFFFFFFH

• What range of memory addresses can be specified by
a relative address

• The largest positive value of C1〈21..0〉 is 221-1 and
its most negative value is -221, so addresses up to
221 -1 forward and 221 backward from the current PC
value can be specified

• Note the difference between rb and R[rb]

2-44 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Instruction Interpretation: RTN
Description of Fetch-Execute

• Need to describe actions (not just declarations)
• Some new notation

instruction_interpretation := (
¬Run∧ Strt → Run ← 1:
Run → (IR ← M[PC]: PC ← PC + 4; instruction_execution));

Logical NOT
Logical AND

Register transfer Separates statements
that occur in sequence

2-45 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Sequence and Clocking

• In general, RTN statements separated by : take place
during the same clock pulse

• Statements separated by ; take place on successive
clock pulses

• This is not entirely accurate since some things written
with one RTN statement can take several clocks to
perform

• More precise difference between : and ;
• The order of execution of statements separated by

: does not matter
• If statements are separated by ; the one on the left

must be complete before the one on the right starts

2-46 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

 More About Instruction Interpretation
RTN

• In the expression IR ← M[PC]: PC ← PC + 4; which value
of PC applies to M[PC] ?

• The rule in RTN is that all right hand sides of “:” -
separated RTs are evaluated before any LHS is changed

• In logic design, this corresponds to “master-slave”
operation of flip-flops

• We see what happens when Run is true and when Run is
false but Strt is true. What about the case of Run and Strt
both false?

• Since no action is specified for this case, the RTN
implicitly says that no action occurs in this case

2-47 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Individual Instructions

• instruction_interpretation contained a forward
reference to instruction_execution

• instruction_execution is a long list of conditional
operations

• The condition is that the op code specifies a given
instruction

• The operation describes what that instruction does
• Note that the operations of the instruction are done

after (;) the instruction is put into IR and the PC has
been advanced to the next instruction

2-48 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Instruction Execution for Load and
Store Instructions

• The in-line definition (:= op=1) saves writing a separate
definition ld := op=1 for the ld mnemonic

• The previous definitions of disp and rel are needed to
understand all the details

instruction_execution := (
 ld (:= op= 1) → R[ra] ← M[disp]: load register
 ldr (:= op= 2) → R[ra] ← M[rel]: load register relative
 st (:= op= 3) → M[disp] ← R[ra]: store register
 str (:= op= 4) → M[rel] ← R[ra]: store register relative
 la (:= op= 5) → R[ra] ← disp: load displacement address
 lar (:= op= 6) → R[ra] ← rel: load relative address

2-49 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

SRC RTN—The Main Loop

ii := (¬Run∧ Strt → Run ← 1:
Run → (IR ← M[PC]: PC ← PC + 4;
ie));

ii := instruction_interpretation:
ie := instruction_execution :

ie := (
 ld (:= op= 1) → R[ra] ← M[disp]: Big switch
 ldr (:= op= 2) → R[ra] ← M[rel]: statement
 . . . on the opcode
 stop (:= op= 31) → Run ← 0:
); ii

Thus ii and ie invoke each other, as coroutines.

2-50 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Use of RTN Definitions:
Text Substitution Semantics

• An example:
• If IR = 00001 00101 00011 00000000000001011
• then ld → R[5] ← M[R[3] + 11]:

 ld (:= op= 1) → R[ra] ← M[disp]:

disp〈31..0〉 := ((rb=0) → c2 〈16..0〉 {sign extend}:
(rb≠0) → R[rb] + c2〈16..0 〉 {sign extend, 2’s comp.}):

 ld (:= op= 1) → R[ra] ← M[
 ((rb=0) → c2〈16..0〉 {sign extend}:

 (rb≠0) → R[rb] + c2〈16..0 〉 {sign extend, 2’s comp.}):
]:

2-51 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN Descriptions of SRC Branch
Instructions

• Branch condition determined by 3 lsbs of instruction
• Link register (R[ra]) set to point to next instruction

cond := (c3〈2..0〉=0 → 0: never
c3〈2..0〉=1 → 1: always
c3〈2..0〉=2 → R[rc]=0: if register is zero
c3〈2..0〉=3 → R[rc]≠0: if register is nonzero
c3〈2..0〉=4 → R[rc]〈31〉=0: if positive or zero
c3〈2..0〉=5 → R[rc]〈31〉=1): if negative

br (:= op= 8) → (cond → PC ← R[rb]): conditional branch
brl (:= op= 9) → (R[ra] ← PC:

 cond → (PC ← R[rb])): branch and link

2-52 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN for Arithmetic and Logic

• Logical operators: and ∧ or ∨ and not ¬

add (:= op=12) → R[ra] ← R[rb] + R[rc]:
addi (:= op=13) → R[ra] ← R[rb] + c2〈16..0〉 {2's comp. sign
ext.}:
sub (:= op=14) → R[ra] ← R[rb] - R[rc]:
neg (:= op=15) → R[ra] ← -R[rc]:
and (:= op=20) → R[ra] ← R[rb] ∧ R[rc]:
andi (:= op=21) → R[ra] ← R[rb] ∧ c2〈16..0〉 {sign extend}:
or (:= op=22) → R[ra] ← R[rb] ∨ R[rc]:
ori (:= op=23) → R[ra] ← R[rb] ∨ c2〈16..0〉 {sign extend}:
not (:= op=24) → R[ra] ← ¬R[rc]:

2-53 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTN for Shift Instructions

• Count may be 5 lsbs of a register or the instruction
• Notation: @ - replication, # - concatenation

n := ((c3〈4..0〉=0) → R[rc]〈4..0 〉:
(c3〈4..0〉≠0) → c3 〈4..0〉):

shr (:= op=26) → R[ra]〈31..0 〉 ← (n @ 0) # R[rb] 〈31..n〉:
shra (:= op=27) → R[ra]〈31..0 〉 ← (n @ R[rb] 〈31〉) # R[rb] 〈31..n〉:
shl (:= op=28) → R[ra]〈31..0 〉 ← R[rb] 〈31-n..0〉 # (n @ 0):
shc (:= op=29) → R[ra]〈31..0 〉 ← R[rb] 〈31-n..0〉 # R[rb]〈31..32-n 〉:

2-54 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Example of Replication and
Concatenation in Shift

• Arithmetic shift right by 13 concatenates 13 copies of
the sign bit with the upper 19 bits of the operand

shra r1, r2, 13

1001 0111 1110 1010 1110 1100 0001 0110

13@R[2]〈31〉 R[2]〈31..13〉
100 1011 1111 0101 0111

R[2]=

#
1111 1111 1111 1R[1]=

2-55 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Assembly Language for Shift

• Form of assembly language instruction tells whether to
set c3=0

shr ra, rb, rc ;Shift rb right into ra by 5 lsbs of rc
shr ra, rb, count ;Shift rb right into ra by 5 lsbs of inst
shra ra, rb, rc ;AShift rb right into ra by 5 lsbs of rc
shra ra, rb, count ;AShift rb right into ra by 5 lsbs of inst
shl ra, rb, rc ;Shift rb left into ra by 5 lsbs of rc
shl ra, rb, count ;Shift rb left into ra by 5 lsbs of inst
shc ra, rb, rc ;Shift rb circ. into ra by 5 lsbs of rc
shc ra, rb, count ;Shift rb circ. into ra by 5 lsbs of inst

2-56 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

End of RTN Definition of
instruction_execution

• We will find special use for nop in pipelining
• The machine waits for Strt after executing stop
• The long conditional statement defining

instruction_execution ends with a direction to go repeat
instruction_interpretation, which will fetch and execute the
next instruction (if Run still =1)

nop (:= op= 0) → : No operation
stop (:= op= 31) → Run ← 0: Stop instruction
); End of instruction_execution
 instruction_interpretation.

2-57 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Confused about RTN and SRC?

• SRC is a Machine Language
• It can be interpreted by either hardware or software

simulator.
• RTN is a Specification Language

• Specification languages are languages that are
used to specify other languages or systems—a
metalanguage.

• Other examples: LEX, YACC, VHDL, Verilog

Figure 2.10 may help clear this up...

2-58 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.10 The Relationship of RTN to SRC

SRC specification written in RTN

RTN compiler

Generated processor

SRC program

and data

Data output
SRC interpreter

or simulator

2-59 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A Note About Specification Languages
• They allow the description of what without having to specify how.
• They allow precise and unambiguous specifications, unlike natural

language.
• They reduce errors:

• Errors due to misinterpretation of imprecise specifications
written in natural language.

• Errors due to confusion in design and implementation—“human
error.”

• Now the designer must debug the specification!
• Specifications can be automatically checked and processed by

tools.
• An RTN specification could be input to a simulator generator

that would produce a simulator for the specified machine.
• An RTN specification could be input to a compiler generator that

would generate a compiler for the language, whose output could
be run on the simulator.

2-60 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Addressing Modes Described in RTN
(Not SRC)

Mode name Assembler RTN meaning Use
 Syntax
Register Ra R[t] ← R[a] Tmp. Var.
Register indirect (Ra) R[t] ← M[R[a]] Pointer
Immediate #X R[t] ← X Constant
Direct, absolute X R[t] ← M[X] Global Var.
Indirect (X) R[t] ← M[M[X]] Pointer Var.
Indexed, based, X(Ra) R[t] ← M[X + R[a]] Arrays, structs
or displacement
Relative X(PC) R[t] ← M[X + PC] Vals stored w pgm
Autoincrement (Ra)+ R[t] ← M[R[a]]; R[a] ← R[a] + 1 Sequential
Autodecrement - (Ra) R[a] ← R[a] - 1; R[t] ← M[R[a]] access.

Target register

2-61 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.11 Register Transfers Hardware
and Timing for a Single-Bit Register

Transfer: A ← B
• Implementing the RTN statement A ← B

Strobe

(a) Hardware (b) Timing

Strobe

B

A

1

0

1

0

1

0

D

B

Q

Q

D

A

Q

Q

2-62 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.12 Multiple Bit Register Transfer:
A〈m..1〉 ← B〈m..1〉

Strobe

(a) Individual flip-flops (b) Abbreviated notation

D

1

Q

Q

D

1

Q

Q

Strobe

D

B〈m..1〉

Q

Q

D

A〈m..1〉

Q

Q

D

2

Q D

2

Q

D

m

Q D

m

B A

Q

Q Q

Q Q

m

2-63 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.13 Data Transmission View of
Logic Gates

• Logic gates can be used to control the transmission of data:

Data gate

Controlled complement

Data merge

data

gate

data

control

gate→data

gate→0

control→data

control→data

data 1

data1(2),

provided

data2(1)

is zero

data 2

data 1

data 2

2-64 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.14 Two-Way Gated Merge, or
Multiplexer

• Data from multiple sources can be selected for
transmission

x y

y

x
Gx

y
Gy

m

x
m

m
m

Time

2-65 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.15 Basic Multiplexer and Symbol
Abbreviation

• Multiplexer gate signals Gi may be produced by a
binary to one-out-of-n decoder

D0

D1

G0

Gn–1

Dn–1

m

An n-way gated merge An n-way multiplexer with decoder

(a) Multiplexer in terms of gates (b) Symbol abbreviation

m

m

m

D0

D1

m

m

m

Dn–1
m

k

Select

G1

m

m

m

2-66 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.16 Separating Merged Data

• Merged data can be separated by gating at the right time
• It can also be strobed into a flip-flop when valid

x y

Gx

m

x
m

0

Time

2-67 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.17 Multiplexed Register
Transfers Using Gates and Strobes

• Selected gate and strobe determine which RT
• A←C and B←C can occur together, but not A←C and B←D

GC

SA

SB

GC

Hold time

Propagation time

SB

m
m

D

C

Q

Q

GD

Gates Strobes

m

m

mm
D

D

Q

Q

D

A

Q

Q

D

B

Q

Q

m

2-68 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.18 Open-Collector NAND Gate
Output Circuit

+V

+V

Out

+V

Inputs Output

0v

0v

+V

+V

0v

+V

0v

+V

Open

Open

Open

Closed

(Out = +V)

(Out = +V)

(Out = +V)

(Out = 0v)

(a) Open-collector NAND

	 truth table

(b) Open-collector NAND (c) Symbol

o.c.

2-69 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.19 Wired AND Connection of
Open-Collector Gates

+V

a bOut

a b
Wired AND

output
Switch

Closed(0)

Closed(0)

Open (1)

Open (1)

Closed(0)

Open (1)

Closed(0)

Open (1)

0v (0)

0v (0)

0v (0)

+V (1)

(a) Wired AND connection (b) With symbols

(c) Truth table

+V

o.c. o.c.

2-70 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.20 Open-Collector Wired OR Bus

• DeMorgan’s OR by not of AND of NOTS
• Pull-up resistor removed from each gate - open

collector
• One pull-up resistor for whole bus
• Forms an OR distributed over the connection

+V

Dn–1

Gn–1

D1

G1

D0

G0

o.c. o.c. o.c.

2-71 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.21 Tri-State Gate Internal
Structure and Symbol

Data

Enable

(a) Tri-state gate structure (b) Tri-state gate symbol

(c) Tri-state gate truth table

Data

Enable

Out OutTri-

state

+V

Enable Data Output

0

0

1

1

0

1

0

1

Hi-Z

Hi-Z

0

1

2-72 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.22 Registers Connected by a
Tri-State Bus

• Can make any register transfer R[i]←R[j]
• Can’t have Gi = Gj = 1 for i≠j
• Violating this constraint gives low resistance path from power

supply to ground—with predictable results!

m

S0

m

m

G0

R[0]

Tri-state bus

m

S1

m

m

m

G1

D

R[1]

Q

Q

m

Sn–1

m

m

Gn–1

D

R[n – 1]

Q

Q

D Q

Q

2-73 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig 2.23 Registers and Arithmetic Units
Connected by One Bus

Combinational
logic—no
memory

Example:
Abstract RTN
R[3] ← R[1]+R[2];

 Concrete RTN
Y ← R[2];
Z ← R[1]+Y;
R[3] ← Z;

Control Sequence
R[2]out, Yin;
R[1]out, Zin;
Zout, R[3]in;

Notice that what could be described in one step in the abstract RTN took three steps on this
particular hardware

R[0]in

Yin

R[0]out

m

m

m

m

m

m
R[0]

Incrementer

Adder

D Q

R[1]in R[1]out

m
D Q

R[n – 1]in R[n – 1]out

m
D Q

Q

Q

Q

WinWout

m

Zout

W

DQ

Q

Zin

Z

DQ

Q

R[1]

R[n – 1]

D Q

Q

Y

2-74 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

RTs Possible with the One-Bus
Structure

• R[i] or Y can get the contents of anything but Y
• Since result different from operand, it cannot go on the bus that is

carrying the operand
• Arithmetic units thus have result registers
• Only one of two operands can be on the bus at a time, so adder has

register for one operand
• R[i] ← R[j] + R[k] is performed in 3 steps: Y←R[k]; Z←R[j] + Y;

R[i]←Z;
• R[i] ← R[j] + R[k] is high level RTN description
• Y←R[k]; Z←R[j] + Y; R[i]←Z; is concrete RTN
• Map to control sequence is: R[2]out, Yin; R[1]out, Zin; Zout, R[3]in;

2-75 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

From Abstract RTN to Concrete RTN to
Control Sequences

• The ability to begin with an abstract description, then
describe a hardware design and resulting concrete RTN
and control sequence is powerful.

• We shall use this method in Chapter 4 to develop various
hardware designs for SRC.

2-76 Chapter 2—Machines, Machine Languages, and Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Chapter 2 Summary

• Classes of computer ISAs
• Memory addressing modes
• SRC: a complete example ISA
• RTN as a description method for ISAs
• RTN description of addressing modes
• Implementation of RTN operations with digital logic

circuits
• Gates, strobes, and multiplexers

