The PowerPC Architecture™: 64-Bit Power with 32-Bit Compatibility

C. Ray Peng*, Thomas A. Petersen?, and Ron Clark”

*Motorola Inc., *International Business Machines Corporation
Somerset Design Center, 9737 Great Hills Trail, Austin, Texas 78759

*International Business Machines Corporation
11400 Burnet Road, Austin, Texas 78758.

Abstract

This paper details the 64-bit PowerPC Architecture specifica-
tion. It compares and contrasts the 32-bit subset specification
against the full 64-bit specification. Architecture, application,
OS, and hardware implications of the 64-bit specifications are all
explored in detail. In addition, 32- and 64-bit compatibility and
OS migration strategies are described.

The PowerPC 620™ microprocessor implementation is used
as a vehicle when examining the 64-bit features. The 620's MMU
is described, and potential performance implications are dis-
cussed.

1. Introduction

Today’s high-end workstations and server environments
stretch system resources like never before. High data
bandwidth is required for data intensive applications like
multi-media and commercial database processing. Com-
mercial applications such as transaction processing and
technical applications are finding ways to exploit large
effective and virtual address spaces. Physical memory size
must scale up with aggregate system processing power as
well as for large individual applications, otherwise all
applications suffer in performance. An implementation of
the PowerPC™ 64-bit architecture such as the PowerPC
620 microprocessor delivers dramatic improvements on
all of these fronts making it an ideal solution for the high-
end workstation and server markets.

The PowerPC 64-bit architecture is a proper superset of
the PowerPC 32-bit architecture. 32-bit PowerPC applica-

Operating systems written for a PowerPC 32-bit imple-
mentation can run on a 64-bit implementation. The modifi-
cations required are similar to those typically associated
with an OS port within the same family. In addition, a 32-
bit PowerPC OS has a clear and concise migration path
that allows adoption of portions of the 64-bit feature set as
the OS grows to meet expanding needs. From the OS per-
spective, the PowerPC implementation is one family and

1063-6390/95 $4.00 © 1995 IEEE

300

one architecture, allowing scalable implementation from
the PowerPC 601™ microprocessor[1] up to the latest
member of the PowerPC family, the PowerPC 620 micro-
processor.

This paper presents an overview of the PowerPC 64-bit
architecture. The PowerPC architecture translation scheme
is discussed in detail, and operating system usage of the
mechanism is explored. The mechanics of translation are
presented for both 32 and 64-bit translation schemes. Dif-
ferences between the two mechanisms are discussed.
Compatibility between 32 and 64-bit mechanisms is illus-
trated through a discussion of OS evolution from 32-bit to
64-bit. Finally, details of the 620 translation implementa-
tion are discussed.

2. PowerPC 64-bit architecture features

The PowerPC 64-bit architecture defines a true 64-bit
architecture to the operating systems and application pro-
grams. The definition expands the 32-bit fixed-point and
load/store data path in the PowerPC 32-bit architecture to
64 bits to allow faster manipulation of an extended-range
of data values (the floating-point data path was 64-bit all
along). It also expands the effective address width from 32
bits to 64 bits and thus increases the address space from 4
giga-bytes to 16 hepto-bytes.

2.1, 64-bit data path

The PowerPC 64-bit architecture extends the width of
the General Purpose Registers (GPRs), the Link Register
(LR), and the Count Register (CTR) to 64 bits. This allows
long long data type in C to be directly manipulated by
programs without resorting to time consuming multiple-
instructions arithmetics. New double-word fixed-point
instructions are introduced to operate on 64-bit quantities.
These include double-word multiplication (mulld/mulhd/
mulhdu), division (divd/divdu), comparison (cmpdi/cmpd/
cmpldilempld), rotation (ridiclridic/ridciirideriridimi), shifting
(sld/srd/sradi/srad), trapping (tdi/td), and leading zero count-

ing (cnfizd). In addition, existing 32-bit arithmetic and
logic instructions are augmented to handle 64-bit quanti-
ties. Instructions that modify the Condition Register (CR)
are also augmented to take into account the 32-/64-mode
bit in the Machine Status Register (MSR) and test out the
appropriate fields accordingly before setting the CR.

To accommodate 64-bit registers, internal data paths
between the GPRs, the fixed-point functional units, and
the branch unit, as well as the load/store data bus between
the GPRs and the cache/memory are all expanded from 32
bits to 64 bits. This expansion speeds up data movement
tremendously in 64-bit PowerPC implementations, and
brings relief to applications that need to move large vol-
umes of data around such as multi-media video applica-
tions, New double-word load (Id/idu/idx/ldux) and store (std/
stdu/stdx/stdux) instructions are added to move double-
word quantities between the GPRs and the memory.

2.2.64-bit address path

The PowerPC 64-bit architecture also extends effective
addresses from 32 bits to 64 bits. For instruction fetches,
an effective address can be taken directly from the Count/
Link Registers, or it can be calculated by adding the
immediate field in the branch instruction to the current
instruction address. For data accesses, an effective address
can be calculated by adding the immediate field in the
instruction to a GPR, or by adding two GPR values. All
calculations are based on 64-bit arithmetic.

Once an effective address is formed it is sent to the
instruction or data memory management unit (MMU) for
translation into a real address. The PowerPC 64-bit archi-
tecture defines a real address as a 64-bit quantity. How-
ever, implementations may choose to implement less than
64 bits by assuming the unimplemented upper bits are all
0’s. The PowerPC 620 microprocessor, for example,
implements a 40-bit real address space.

2.3. Segment-table based translation

A major extension to the PowerPC 64-bit architecture is
the extension of effective address space from 32 bits to 64
bits and the addition of a segment-table based translation
scheme. Figure 1 shows the formats of 32- and 64-bit
effective addresses. For 32-bit architecture the most sig-

byte
3t

SH
0 34

age
1820

L ESID

[page | bye |
0 5152

Figure 1. Effective Address Format

301

nificant 4 bits of an effective address designate a segment
register (SR) from which the effective address is translated
into a virtual address. The 64-bit architecture uses the 36-
bit Effective Segment ID (ESID) as a key to search into a 4
Kbyte segment table. A unique segment table entry (STE)
is extracted from the segment table and is used to translate
the effective address into a virtual address.

While these two schemes may require very different
hardware implementations, they are actually very similar
from application software’s point of view. The only differ-
ence is that there are a lot more segments in segment-table
based translation (236) than in the segment-register based
translation (24). A detailed discussion of this segment-
table based translation scheme and its implications to the
system software appears in subsequent sections.

3. PowerPC address translation overview

The PowerPC architecture employs a 2-stage address
translation scheme to translate an effective address into a
real address. The first stage maps an effective address
(EA) into a virtual address (VA). In the 32-bit architecture
this mapping is accomplished by a segment register map-
ping as shown in Figure 2. The upper 4 EA bits select 1 of
16 segment registers which provides the VA mapping.

EA (0:3)

e |
segment =¥

EA (4:31)

52-bit VA
Figure 2. 32-bit EA to 52-bit VA Translation

This same EA to VA translation is accomplished in the
64-bit architecture using a segment table as shown in Fig-
ure 3. The 36 upper order EA bits are used to search a seg-
ment table stored in the memory. The segment table is a
fixed 4-Kbyte structure. Its location is kept in the architec-
tural Address Space Register (ASR) and maintained by the
operating system. Each entry in this table stores the map-
ping for one segment and occupies 16 bytes; so there can
be up to 256 segments simultaneously accessible to the
processor. When additional mapping is needed, entries can
be swapped in and out of this table through operating sys-
tem services (typically following a segment fault).

To speed up the search in the segment table, the Pow-
erPC 64-bit architecture defines an optional Segment

EA (0:35) EA (36:63)
—] seé;mémabl'els BI—]
10 7168 - 79
80-bit VA
Figure 3. 64-bit EA to 80-VA Transiation

Lookaside Buffer (SLB) for caching recently accessed
STE’s. In addition, the segment table is organized as a
hash table to increase the density of the table. A carefully
thought-out collision resolution scheme is integrated into
the table lookup procedure to reduce the amount of search
per lookup[2].

The second stage of the memory translation maps a VA
to a Real Address (RA). Most operating systems will use
this level of translation to handle page level memory
swapping and to manage the main memory as a cache of a

larger secondary store.

The VA-to-RA translation is accomplished using a page
table stored in memory for both 32- and 64-bit architec-
tures. Figure 4 shows the translation for 32-bit architecture
The page table is searched using the upper 40 bits of a VA.
If the search is successful, a 20-bit real page number
(RPN) is retrieved from this table. The RA is formed by
concatenating this 20-bit RPN with the bottom 12-bit byte
offset from the EA, which remains unchanged throughout
the translation.

VA (0:39) VA (40:51)

A
19120
32-bit RA
Figure 4. 32-bit VA to 32-RA Translation

10 31

The VA-to-RA translation in 64-bit architecture is
almost identical to the 32-bit architecture except that all
the fields are longer (a page table entry is 8-bytes long for

302

VA (0:67)
v

VA (68:79)

—— page table/TLB —]

D — I |

A 4
5162
64-bit RA
Figure 5. 80-bit VA to 64-RA Translation

v
(2 5

the 32-bit architecture vs. 16-bytes long for the 64-bit
architecture). As shown in Figure 4, the upper 68 bits of a
VA are used to search for an entry in the page table. A 52-
bit RPN is then extracted from the entry and concatenated
with the 12-bit byte offset to form a 64-bit RA. As men-
tioned previously, the 620 only implements 40-bit real
address space. Consequently, the page table translation on
the 620 will only produce a 28-bit RPN,

Similar to the first stage translation, the architecture
defines a cache structure called Translation Lookaside
Buffer (TLB) for storing recently accessed page table
entries (PTE’s). This TLB is defined in both 32- and 64-bit
architectures and is maintained by the hardware (to be dis-
cussed in section 6.4).

Like the segment table, the page table is organized as a
hash table with a similar collision resolution scheme to
increase the density of the table and reduce the amount of
collisions. It is also maintained exclusively by the operat-
ing system (typically through page fault service routine).
Unlike the segment table the page table is a variable-size
structure. Its size can be 2" bytes long where 16<n<25
for 32-bit architecture and 18 s n<46 for 64-bit architec-
ture. The size of the page table is stored in the architectural
Storage Description Register 1 (SDR1) which also stores
the location of the page table in the main memory. The
hashing function takes into account the page table size
when hashing VA bits into the page table entry address
during the search.

The 32- and 64-bit translation mechanisms differ only in
the size of their address spaces, as summarized in Table 1.

Table 1: Address Space Sizes in PowerPC Environments

Effective Virtual Real
32:BIt 22 22 2%
64-Bit 284 280 2%

The symmetry of the two addressing models is no acci-
dent. It provides an opportunity for clean migration from
the 32- to 64-bit environment. Additionally, the two stage
translation mechanism is key to high performance operat-
ing system design.

4. Operating system perspective of PowerPC
address space structure

Modern operating systems use a multi-address-space
memory structure to support multi-user and/or multi-task-
ing programming environments. A typical address space
structure for such an OS is shown in Figure 6. An effective
address space exists for each running program. Multiple
effective address spaces co-exist in the system simulta-
neously. The software entity for which an effective
address space exists is usually called a process.

Figure 6 shows two processes, Proc A and B, running
concurrently in two different effective address spaces. The
figure illustrates some interesting scenarios that take
advantage of the PowerPC two stage translation mecha-
nism. For example, ESeg B and ESeg C are mapped to the
same virtual segment VSeg B through segment sharing.
VPage 2 and VPage 4 are mapped to the same real page
RPage B through page sharing. These two kinds of shar-
ing are frequently used to share instructions and data.
ESeg D is currently unmapped. The operating system
needs to set up the link (shown as a dotted arrow) before
this segment can be accessed. VPage 7 also does not map
into any real page. Reference to this page will result in a
page fault and cause the operating system to map the page
into the real address space. Finally, RPage F and G are [/O
pages which are not associated with real memory. Instead

Muttiple
Independent
EA spaces

Single
Unified
VA space

RA space
in memory

Figure 6: Typical OS Image of Address Space:

303

these pages are typically used to directly access a hard-
ware device.

A hypothetical layout of a process effective address
space is shown in Figure 7. The effective address space is
a combination of application program areas and global OS
areas. It is typical to see the OS mapped to the same rela-
tive segment location in each process address space. This
allows the OS to field system calls (i.e., application pro-
gram requests for OS services) without having to change
addressing context in order to access its global data, The
OS areas are not modifiable by application programs. In
secure operating systems, the OS data is hidden and not
accessible at all to application programs. This is accom-
plished using the PowerPC storage protection mechanism.,

Shared Libr:
N+1 Text i v
Shared Data Segment mser
N (Application Data) Visiie
a3 Process-Specific
Application Data
Process-Specilic
2 Application Text
1 perating System
Data Protected
Segment 0 Operating System
Text
Figure 7. Hypothetical Process Address Space Layout

Each process effective address space contains instruc-
tions and data segments for the application program.
These areas are accessible in non-privileged execution
mode and typically consist of a combination of areas.
Some arcas are private to each process and some are
shared across multiple processes. How much is shared and
whether the sharing is accomplished via segment sharing
or page sharing is dependent on operating system imple-
mentation. In the AIX™ operating system, for example,
the instruction text areas of the application’s address space
(being read only) are shared across all processes needing
the executable text. This includes both shared library text
and program text when multiple processes happen to be
executing the same program concurrently. Data is nor-
mally private, per process, unless a shared area of data is
explicitly set up by two or more cooperating processes for
purposes such as multiple-process dynamic data or shared
access to a mapped file.

Overall, the PowerPC memory model is designed to
allow efficient operation of modem operating systems, It
provides hardware facilities that simplify the software

overhead associated with maintaining multiple indepen-
dent address spaces. It also provides a firm foundation for
secure software systems.

5. 32/64-bit architectural compatibility and
operating system migration

Fundamentally, a goal of the PowerPC architecture is to
provide binary compatibility for 32-bit applications across
all PowerPC environments. Additionally, the PowerPC
architecture allows flexibility in how a 32-bit OS
approaches 64-bit evolution. Market forces will determine
when a particular OS evolves to 64-bits, and when that
time comes, the PowerPC architecture allows OS’s to pick
the 64-bit features it needs to exploit. Table 2 summarizes
the compatibility properties of the PowerPC architecture.

Table 2: PowerPC Compatibility

32-blt hardware 64-bit hardware
Implementation Implementation
32-bit0S | - Runs32-bit apps, | » Runs 32-bit apps,
» Minimal changes
in OS port
32-bit0OS J -Buns32-bitapps, | =
evoiving » Allows stepwise
towards evolution
64-bit » OS's pick from 64-
bit features
64-bitOS § +N/A « Runs 32-bit apps,
* Runs 64-bit apps.
* New OS version

This table illustrates one of the most important elements
of the PowerPC architecture - compatibility between 32-
bit and 64-bit operating environments. The architecture is
defined as a full 64-bit architecture with a 32-bit subset
that includes a 32-bit execution mode and 32-bit (effec-
tive) address spaces. Furthermore, 32-bit implementations
of the PowerPC architecture only need to implement the
32-bit subset. The 32-bit execution environment is a sub-
set of the 64-bit PowerPC environment. This allows 32-bit
application binaries written to a standard PowerPC 32-bit
application binary interface (ABI) to run unmodified, with
appropriate OS support, on either a 32-bit or a 64-bit Pow-
erPC system. Simply put, 32-bit applications run on all
PowerPC systems.

Table 2 also highlights the issues associated with com-
patibility and migration at the OS level. The PowerPC
architecture is designed to support a full 64-bit OS (i.e.
one that fully supports and exploits the 64-bit capabilities
of the hardware). It also enables existing 32-bit OS’s to

304

migrate onto 64-bit hardware. This is accomplished by
building an OS migration path into the PowerPC architec-
ture. The migration path for a 32-bit OS is evolutionary,
not revolutionary,

The first row of Table 2 shows the first phase in OS evo-
lution; simply migrate the 32-bit OS to run on PowerPC
64-bit systems. Ideally, this occurs with minimal change to
the 32-bit OS. PowerPC limits this re-work as follows:

« 64-bit and 32-bit implementations have the same func-
tional definition for key 32-bit privileged instructions
that may be used by 32-bit OS’s.

« 64-bit implementations support the same fundamental
translation facilities as 32-bit hardware.

The first point allows a 32-bit OS to run transparently on
64-bit hardware in 32-bit execution mode, without even
being aware that there is a 64-bit environment capability
present on the hardware. This is accomplished in a manner
closely analogous to the 32-bit compatibility of applica-
tion instructions (see section 2.1). Key 32-bit privileged
OS instructions retain the same semantics between 32- and
64-bit systems. Comparable operations for 64-bit data tar-
gets are defined as new, extended 64-bit instructions. Exe-
cution mode can be initialized to 32-bit by hardware prior
to the OS getting control, and the use of 32-bit privileged
instructions does not ever change the execution mode.

‘While the 64-bit architecture continues to provide a seg-
mented structure for the effective address space, the seg-
ment table translation mechanism is introduced to meet
the requirements of a 64-bit effective address space. A
wholesale replacement of the segment register concept
would require a significant rewrite in a 32-bit OS, so the
PowerPC architecture retains segment registers even in the
64-bit environment. Thus for a 32-bit OS that just wants to
run on a 64-bit implementation the segmentation mecha-
nism is unchanged.

An OS port to the 64-bit architecture will include modi-
fications to support the enhanced 64-bit page table format.
For 32-bit OS’s, this modification does not imply support
of the large real address space.

Row 2 of the compatibility table highlights the evolution
path of a 32-bit OS. There are four steps that a 32-bit OS
can consider when migrating toward full 64-bit support.
They relate to the sizes of architected address spaces in a
64-bit PowerPC system and are relatively independent of
one another. The four steps for a 32-bit OS to consider are,
in likely order of implementation:

» supporting large real address space;
« supporting 64-bit application address space;

* sppporting large virtual address space;
« and internal OS exploitation of 64-bit addresses.

The key attribute of the PowerPC architecture which
allows this flexibility and progressive exploitation of dif-
ferent elements of 64-bit facilities is the way that 32-bit
compatibility co-exists within the full 64-bit PowerPC
architecture. 32-bit compatibility is not a separate mode or
state of the processor, but a subset of the integrated whole.
The 32-bit OS looking at 64-bit PowerPC sees the subset
relationship differently; it sees the 64-bit PowerPC archi-
tecture as a proper superset of the environment it currently
runs in. Existing applications and 3rd-party software con-
tinue to run as the OS begins to support 64-bit applications
and/or large real memory configurations.

6. PowerPC 620 implementation

The 620 fully implements the 64-bit translation architec-
ture including 32-bit compatibility hooks. It uses a novel
2-Jevel translation scheme to achieve its performance and
speed goals. Figure 8 shows the block diagram of the 620
MMU. The first level MMU consists of 2 independent
Effective to Real Address Translation buffers (ERATS):
one for instruction address translation (IERAT) and one
for data address translation (DERAT). Both ERATs are
organized as 64-entry, fully-associative buffers and each is

capable of translating one 64-bit effective address into a
40-bit real address every cycle. Upon a miss, the EA is
sent to the shared, second-level MMU for translation. The
second level MMU consists of a 20-entry, fully-associa-
tive SLB and a 128-entry, 2-way set-associative TLB. The
first 16-entries of the SLB also serve as the 16 Segment
Registers for 32-bit translation, The SLB and TLB trans-
late EA to RA according to the description in Section 3.
The translated RA is refilled into the requesting ERAT,
which then re-translates the missed EA.

If the SLB/TLB can not translate the EA, a hardware
table walk mechanism (TWalk) is initiated. The TWalk
searches the segment table, the page table or both, refills
the missing entry, then retries the translation. If the TWalk
fails, a segment or page fault occurs, and control is passed
to the operating system. Figure 9 shows the translation

RPN EPN

translate
by ERAT?,

no

arbitrate

Fetch Effective Addr Data Access Effective Addr
64-entry 64-entry
fully-assoc fully-assoc
IERAT DERAT
v
|-Real Addr w D-Real Addr
vV
Arbiter
Refill
RA
Miss EA
20-entry 128-entry
fully-assoc VA 2-way
SLB TLB
W |
4 4
Table Walk
Reill
Segment Reg. Hardware
Interface d Table Walk
Figure 8. 620 MMU Organization

refill

EA: 64-bit effective address
VA: 80-bit virtual address
RA: 40-bit real address

EPN: EA(0:51) - Effective Page Number

for SLB/TLB ERAT
ESID EPI
ranslate yes translate yes
by SLB?
vsio Y VSID by TLB2” o
rofill no no refill
SLB TLB
32-bit yes page
lati TWALK
"an’:gggn good? yes
no no
yes 2
page
gmenN_ no
TWALK fault
00d?,
segment
ault
Terminology:

ESID: EA(0:35) - Effective Segment ID
EPI: EA(36:51) - Effective Page Index
VSID: VA(0:51) - Virtual Segment ID
RPN: RA(0:27) - Real Page Number

Figure 9. 620 MMU Translation Flow

305

flow through the 620 MMU. Not shown in this figure are
some miscellaneous checks for other storage faults such as
protection violation, instruction fetch into a no-execute
segment or guarded page, etc.

6.1.First-level MMU - ERAT

A major design goal of the 620 MMU is to support one
cycle access to the on-chip L1 caches. Since both the 620
instruction and data L1 caches are physically tagged, the
MMU translation is on the critical path for the cache hit
signal. To make one-cycle cache access possible, the
MMU must complete the translation and deliver the real
page number to the cache for tag comparison in less than
one cycle. In addition, the MMU needs to maintain a high
hit ratio to avoid frequent stalls in cache accesses, which
can not be completed without a real page number. To
accomplish this, the MMU needs to store enough segment
table entries and page table entries for the 32 kilobyte
instruction cache and the 32 kilobyte data cache.

To solve the speed problem, the straightforward imple-
mentation of the SLB and the TLB as suggested in the
architecture books are abandoned because they require
several 52-bit VSID comparators’ to compare the VSID
outputs from the SLB and the TLB in order to determine
MMU hit. This creates a speed path through these compar-
ators and requires extra routing space for the VSIDs,
which may further slow down the speed path.

Instead the 620 combines the function of the SLB and
the TLB into a single fully-associative cache called an
ERAT, which maps the EA directly into the RA without
going through the intermediate virtual addresses. Because
it is fully-associative, there is no need for back-end com-
parators to verify a hit in the ERAT. An ERAT hit signal
can be generated directly from the comparison in its con-
tent addressable memory (CAM). Also, because the trans-
lation bypasses the intermediate virtual address, there is no
need to store the 52-bit VSIDs, which saves chip area and
reduces routing.

Because the SLB and TLB are architecturally defined
structures, an instruction that manipulates these two buff-
ers may also affect the contents of the ERAT. Specifically,
the 620 supports slbie/tibie/slbia instructions’, which invali-
date all or some entries in the ERAT based on different cri-
teria. To implement the slbie and tibie instructions, the
CAM in the ERAT is broken up into two independent
CAMs: an ESID CAM, which compares to the upper 36
EA bits, and an EPI CAM, which compares to the next 16

*, Assuming the SLB is implemented as a fully-associative structure and
the TLB as a set-associative structure, the number of VSID compara-
tors needed is equal to the size of the TLB set.

. The 620 also supports misr/mtsrin, which will be covered in section 6.3.

306

EA bits. For normal translation operations, the match lines
of these two CAMs are ANDed together row-by-row to
produce an unique match. For sibie, the match lines of the
EPI CAM are ignored and the ESID CAM alone selects
the entries that need to be invalidated. Similarly for tiie,
the ESID CAM match lines are ignored and the EPI CAM
selects entries to be invalidated. The slbia instruction will
simply invalidates all the entries in the ERAT.

Figure 10 shows a simple block diagram of the 620
ERAT. The breakup of the CAM into 2 independent
CAMs actually helps the speed of ERAT during normal
translation. This is because both CAMs are implemented
with dynamic logic and by breaking the long 52-bit match
line into 2 shorter match lines, the loads on the match lines
are smaller.

T
v v
— = —

EsiD =] W [T ept [men
CAM : control : CAM : array
slbla—J l
$lbia————

tible RA

Figure 10. ERAT Block Diagram

To ensure that a sustainable high hit ratio is maintained
in the first-level MMU, 64 entries are squeezed into both
ERATS. This equips the ERAT 8 times the minimal num-
ber of entries required to translate a 32 kilobyte cache.
This also results in a relatively low ratio between the num-
ber of cache lines and the number of ERAT entries.

In case the ERAT does miss, it can be quickly refilled
from the second-level MMU to avoid the long stalls that
would have been needed for searching memory resident
segment and page tables. In addition, both ERATS are
capable of delivering hits under one miss, reducing the
penalty of an ERAT miss.

6.2.Second-level MMU - SLB and TLB

The single-table ERAT approach for the first-level
MMU is able to solve the speed problem adequately. How-
ever, even with 64 entries, the hit rate may remain low if
the ERAT has to “cold-start” frequently due to context
switches (such as in transaction processing environment).
The PowerPC architecture suggests that an slbia instruc-
tion be executed upon context switch if the segment table
is not shared between processes. This has the undesirable

effect of invalidating all ERAT entries, even though many
of the entries may still have good RPNs due to segment
and/or page sharing between processes.

To speed up the recovery of the ERAT, a second-level
MMU implements the SLB and TLB as suggested in the
architecture. The slbia instruction will only invalidate the
content of the SLB. Therefore, if there are segments and/
or pages shared between the outgoing process and the
incoming process, or if there are still good TLB entries left
from the previous process tenure, they can be quickly
brought into the ERAT after the required SLB entry is
restored. This avoids unnecessary table searches.

6.3.SLB as segment registers

The SLB also serves as the 16-entry segment register
file. A binary decoder is built into the SLB word line cir-
cuit to provide support for the mtsr/misrin instructions. Exe-
cuting either of these 2 instructions will activate the binary
decoder to select one of the first 16 rows in the SLB for
writing. The 4-bit index which selects the row, is also
stored into bits 32:35 of the 36-bit ESID-CAM in the SLB.
The upper 32 bits of the ESID are filled with 0’s. This
allows an SLB entry to mimic the operation of a segment
register and to match on a 32-bit address designated to use
that segment register. A side-effect of the mtsr/misrin
instructions is that related entries in the ERATS are invali-
dated. This partial invalidation is accomplished by treating
the these instructions like an slbie operation to the ERAT.
This is required to maintain the coherency between the
ERAT and the SLB.

6.4. Hardware table walk

In case an EA misses in both the first-level and second-
level MMU, a hardware table walk mechanism (TWalk) is
initiated to search for the missing segment table entry
(STE) and/or page table entry (PTE). The 620 will hash
the EA into a STE/PTE group address according to the
algorithm specified in the PowerPC Architecture Book
III[3]. Entries from the group are then brought in for com-
parison with the target ESID/VSID., If a matching entry is
found, it is refilled into the SLB/TLB, which will then
restart the lookup cycle to produce hit and refill back to the
requesting ERAT. If no matching entry can be found, a
segment fault or page fault occurs and control is passed to
the operating system. TWalk can also be initiated to
update the C-bit (Change-bit) in a page table entry accord-
ing to the PowerPC architecture specification. This hap-
pens when a memory store is about to take place in a clean
(C-bit = 0) page.

An important aspect of TWalk is that it can not be initi-
ated by speculative memory accesses. This is mainly to

307

save bus bandwidth and prevent unnecessary pollution of
the L2 cache, since every TWalk could fetch up to 256
bytes of data from memory.

7. Summary

The PowerPC 64-bit architecture meets the needs of
server and high-performance workstation applications.
The architecture delivers large address spaces and high
data bandwidth that enables new levels of performance.

Application level binary compatibility is a cornerstone
of the PowerPC architecture. 32-bit applications run on
any PowerPC compliant system protecting software
investments as users upgrade to the 64-bit environment.

Facilities that support the migration of 32-bit OS’s are
built into the 64-bit architecture. A migration path exists
for these 32-bit OS’s that allows quick ports to 64-bit
implementations, and subsequent stepwise evolution to a
full 64-bit OS.

Finally, the PowerPC 620 microprocessor, as the first
member of the 64-bit family provides 64-bit power and
32-bit compatibility. Its aggressive design goals are met in
the MMU through a novel 2-level hierarchy which pro-
vides both high translation hit rates and short cycle times.

References

[1] C. Moore, “The PowerPC 601 Microprocessor,” IBM RISC
System/6000 Technology: Volume II, IBM Corporation,
1993.

[2] “PowerPC™ Microprocessor Family: The Programming
Environments,” Motorola Data Book: MPCFPE/AD, IBM
Data Book: MPRPPCFPE-01, 9/94.

[3] E. Silha, “The PowerPC Architecture,” IBM RISC System/
6000 Technology: Volume LILIIL, IBM Corporation, 1993.

PowerPC, PowerPC 601, PowerPC 620, PowerPC Architecture, and AIX
are trademarks of Intemational Business Machines Corporation.

Motorola is a trademark of Motorola, Inc.
All trademarks are the property of their respective owners.

In this paper, the term “620” is used as an abbreviation for the phrase
“PowerPC 620 microprocessor.”

