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Abstract

In October of 1991, IBM, Apple, and Motorola
formed an alliance to produce a new microprocessor
family named the PowerPC. Less than two years
later, the alliance has produced the first chip of the
PowerPC family, the MPC601. This paper will
analyze the PowerPC 6xx family, with an emphasis
on the architecture of the MPC601 chip. The 601's
Reduced Instruction Set Computer (RISC)
architecture will be examined, including the three
parallel execution units (integer unit, branch unit, and
floating point unit), the instruction unit, the memory
management unit, and the system interface. In
addition, the software environments for the PowerPC
will be discussed. Finally, conclusions about the
chip will be drawn and an outlook on the future of the
PowerPC family will be made.

Overview

The PowerPC is a follow-on to IBM's RISC chip
found in its RS/6000 workstation line. Although the
workstation line has been successful, the UNIX
market has not experienced the same level of
market dominance that the personal-computer
market has enjoyed. Most personal-computers
today contain an Intel produced 80X86/Pentium
processor - about 85%

of personal computers use Intel chips. In an effort to
break Intel's hold on the market, IBM has formed an
alliance with Apple and Motorola to produce the
PowerPC.

IBM has brought its record making RISC architecture
to the alliance. Apple's contribution will be more
noticed when Taligent's (a joint owned Apple-1BM
company) Pink operating system is unveiled to run
on the PowerPC. Motorola's chip designers and new
submicron chip fabrication plant complete the
powerful alliance. By jointly developing the
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processors at the Somerset Design Center in Austin,
Texas, the alliance has been able to share the cost
and promote what they hope will be an industry
standard in the coming years, displacing Intel's
stranglehold on the PC microprocessor market.

Features

There are significant differences between the RISC
based 601 chip and the Pentium chip from Intel.
The main difference is in its fundamental
architecture. The 601 is RISC based, meaning that
there are a relatively few number of pipelined
instructions to achieve a high throughput on each
clock pulse. The Pentium, on the other hand, is a
Complex Instruction Set Computer (CISC)
architecture. This means that more instructions
exist so that the chip may be programmed at a
higher level, but each individual instruction typically
takes multiple clock cycles to complete. The 80486
and Pentium processors have begun incorporating
more RISC type features, but the added support is
still there for the older chips in the series.

The size of the 601 is only 11mm x 11mm, fitting in
a total of 2.8 million transistors. Pentium, on the
other hand, has 3.1 million transistors on a die size
of 16.6mm x 17.6mm. The smaller size of the 601
is mainly a result of a 0.65 micron four-layer CMOS
process, as opposed to the 0.8 micron BiCMOS
process that Intel used. The smaller size has helped
sell the 601 for $450, as opposed to approximately
$900 for the Pentium. Furthermore, the smaller size
and CMOS process has resulted in a smaller power
dissipation, only 9 Watts for a 66 MHz 601 as
opposed to 16 Watts for the same speed Pentium.
This should result in lower system design cost, as
the Pentium systems have received a lot of press
because of the need for extra cooling fans.

Performance benchmarks on the 601 to date show a
one and a half to five times increase over the
Pentium, depending on the kind of operation.



PowerPC 6xx Family

The MPC601 is the first of a series of PowerPC
chips announced by the alliance. Next year,
PowerPC 603 systems should be available. The 603
is a low-power version of the 601 aimed at the
notebook computer market, and will contain extra
power-saving features. The workstation foliow-on to
the 601 is the 604. The 604 will have a bigger
pipeline and higher parallelism. It will also have
more advanced branching techniques to improve
system performance. The 604 systems should start
appearing by late 1994. The top-of-the-line
PowerPC chip will be the 620, and will contain both
64 bit address and data paths. It will also use a
higher-throughput processor bus, and contain extra
hooks for multiple-chip configurations. Systems with
this chip are expected to appear in early 1995.

In addition to the family of processors to be
produced by the alliance, both IBM and Motorola
have announced independent plans to produce
embedded-controllers versions of the PowerPC.
Such controliers may have no floating point unit, a
small ASIC core with room for application-specific
silicon, and increased exception handling routines.
These products should be introduced in mid-1994.

MPC601 Architecture

The 601 is a follow-on to the IBM Power Optimized
With Enhanced RISC (POWER) architecture found
in its workstation line. Because itis a RISC
processor, it contains fixed length 32-bit wide
instructions and three parallel execution units. The
three execution units are the Branch Processing Unit
(BPU), Integer Unit (1U) and Floating-Point Unit
(FPU). Instructions are dispatched to the different
execution units via an Instruction Unit, which can
queue up to eight instructions and has a dedicated
adder for prefetching. Instructions and data are
fetched from a 32kB unified eight-way,
set-associative cache. This cache uses a
least-recently used (LRU) replacement algorithm.
Memory management is performed by the Memory
Management Unit, which has inside it a 256 entry,
two-way set associative unified translation lookaside
buffer (UTLB) for virtual to physical memory
mapping. The MMU supports demand paging for
4kB pages and supports block addressing for block
sizes ranging from 123kB to 8MB. To connect to the
worid, the 601 has a system bus based on the

Motorola 88110 processor bus. This bus has
arbitration lines to support multiple bus masters and
the 601 can run at an integer multiple of the bus
frequency. The MPU601 has a 64 bit data bus and a
32 bit address bus, and contains 32 general-purpose
registers (GPRs) and 32 floating-point registers
(FPRs). See Figure 1 for an overall block diagram
of the MPC601.

Block Diagram of MPU601 PowerPC Microprocessor
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Instruction Unit

The purpose of the Instruction Unit is to provide
control for the 601's three independent execution
units (See Figure 2). To accomplish this, the
instruction unit has an instruction queue which holds
up to eight instructions. Up to eight instructions can
be fetched from the cache and filled in the queue at
once. Assuming that all instructions are in the
cache, all fetches will complete in one cycle. Once
in the queue, instructions move (are shifted) from
the upper half (Q7-Q4) to the lower half (Q3-Q0).
The upper half of the queue are merely holding
places, while the lower half are used to issue
instructions. The entire lower half of the queue is
searched for issuing to the BPU and FPU, while Q0
is used for issuing instructions to the integer unit.
Since there are three instruction units which can be




executing instructions at the same time, the 601 is
able to perform up to three instructions in parallel.

Once instructions are issued, a sequential
fetcher is used to get more instructions for the
instruction queue. The sequential fetcher is possible
due to a dedicated adder within the instruction unit.
The instruction unit tries to keep the instruction
queue filled at all times. The BPU uses static
branch prediction to prefetch instructions for the
instruction queue. Although instructions can be
issued to the IU and FPU while a possible branch
exists in the BPU, the instructions will stop at the
register write stage of their pipeline and not perform
the write-back stage. Using the static branch
prediction, execution tries to proceed normally. On
unconditional branches, the branch is removed from
the instruction stream. This is known as branch
folding.

If the branch prediction was correct, normal
operation continues with no cycle delays. In the
event that a branch prediction was incorrect, the
queue will be flushed and instructions will be fetched
from the correct location.

Because the instruction unit can issue instructions
out of order to the branch processing unit and
floating point unit, the strict deterministic ordering of
instructions is loosened and higher throughput is
achieved.
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Figure 2 Figure taken from Reference [4)

In addition, the instruction unit performs feed
forwarding. In feed forwarding, an instruction which
has the same register output as the input to the next
instruction is routed automatically to the next
instruction without performing the usually required
extra read. The reduces the number of clock cycles
an execution unit must wait to use a register.
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Branch Processing Unit (BPU)

The branch processing unit tries to prevent the
delays normally incurred by branches. Typically,
when a branch occurs, extra cycles are needed
because the new target address is not in the
instruction queue and quite possibly not in the
cache. The branch processing unit tries to anticipate
branches and correctly predict conditional branches
(ones that must wait for the condition to be
calculated) so that prefetching can be done at the
new target address. The instruction queue will then
remain filled and execution pipeline units will keep
busy. Although the BPU is an independent
execution unit, it is logically a part of the instruction
unit since its goal is to keep the instruction queue full
and other execution units busy.

For conditional branches, the 601 uses a bit in its
instruction coding to specify how to predict the
branch. The default operation is that backwards
branches (previous instructions) are predicted taken
and forward branches (instructions not yet reached)
are predicted untaken. This static approach (not
condition dependent) is in contrast to the dynamic
method of other popular processors such as the
Pentium, which predicts branches based on the
history of branches taken. The static approach is
also simpler to implement, thereby saving
real-estate on the die as well as design time, power,
etc.

There are two rules the BPU must adhere to for
conditional branches in order to ensure proper
sequential program execution. First, no instruction
following a branch can write results to a register.
And secondly, no additional branch instructions can
be issued to the BPU while a branch prediction is in
process.

The BPU uses a dedicated adder and three
special-purposes registers for branch prediction - the
link register (LR), count register (CTR), and control
register (CR). By using special-purpose registers
instead of general-purpose registers, the BPU's
execution is not dependent on the availability of the
GPRs and hence can operate independent of the
FPU and 1U.

The branch unit is essentially a one-stage pipeline.
Unconditional branches are folded as described
previously. For conditional branches, a prefetch
occurs at the predicted target address. Current
instructions subsequent to the branch are stopped;
when new prefetched instructions arrive, the stopped




instructions are discarded. If, however, the branch
condition is evaluated and the branch prediction is
found to be incorrect before the prefetched
instructions arrive, the stopped instructions will
restart and the prefetched instructions will be
discarded.

Although there is a penalty for wrongly predicted
branches, the rewards of a zero-delay branch
prediction outweighs the cost.

Integer Unit (IU)

The integer unit executes arithmetic and logical
instructions as well as memory access instructions
(including floating point memory access
instructions). It contains an arithmetic logic unit
(ALU), an integer multiplier, divider, and the
general-purpose register file with 32 registers. The
register file contains two write-back ports so that two
accesses can be done in parallel (eg. from the cache
and integer execute unit). It also contains the
integer exception register (XER).

To access information, the integer unit has
interfaces to both the cache and memory
management unit. All load and store instructions are
issued and translated in program order, although
accesses can occur out of order. To calculate an
address, one source register (or zero) is added to
either a second source register or a 16 bit immediate
field imbedded within the instruction. One
instruction can be issued to the IU each clock cycle.

The ALU performs integer adds and subtracts, as
well as the standard logical functions such as
compare, rotate, and shift. The MPC601 also
contains additional POWER rotate and shift
instructions for additional compatibility that will not
exist in future PowerPC implementations.

The IU is implemented as a three stage pipeline,
which may be expanded to four. The bottom of the
instruction unit queue (Q0) is decoded and issued to
the execute stage if the stage is empty. If the
execute stage is not empty, the instruction is passed
to a buffer stage (the possible fourth stage) until the
execute stage becomes available. The buffer stage
tries to overcome stalls in the |U pipeline due to
multicycle operations in the execute stage. After the
instruction completes the execute stage, results
enter the write back stage, where integer instructions
are written to the GPR file.

Floating Point Unit (FPU)
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The PowerPC floating point unit contains a single
precision multiply array, double precision add array,
a divider, 32 floating point registers (FPRs), and a
floating point status and control register. it is used to
operate on all IEEE 754 floating point data types
(not a number [NaN}, normalized, denormalized,
zero, and infinity). By having the floating point
operations in hardware, the 601 is able to avoid the
software latency of exception routines to handle
floating point operations. This is similar to the Intel
486, which for the first time put its floating point unit
on chip instead of creating a 487 math coprocessor
as the company had done with past products.

The floating point unit is broken up into five
pipelined stages: buffer stage, decode stage,
execute1 stage, execute2 stage, and writeback
stage. Unlike the |U, the floating point unit does not
have feed forwarding, so instructions which depend
on data from a previous instruction must wait until
the previous instruction performs its writeback to
registers. The FPU pipeline makes it possible to
execute most single precision and many double
precision floating point operations in a single clock
cycle.

In contrast to the 1U, all FPU instructions must spend
at least one cycle in the buffer stage. And like the
BPU, the floating point unit can access the bottom
half of the instruction queue (Q3-Q0), thereby
reducing bottlenecks and allowing non-data
dependent instructions to be executed out of order.
And like the GPR file of the IU, the FPR's are dual
ported to allow access by the cache and the
writeback stage of the FPU pipeline in the same
cycle.

Memory Management Unit (MMU)

The memory management unit is responsible for
both translating virtual to physical addresses and for
enforcing protection with regard to supervisor and
user privileges. See Figure 3 for a block diagram of
the MMU.

The MPC601 is able to address up to 4 terabytes of
virtual memory (2°?) and 4 gigabytes of main
memory (2%3). The instruction unit generates
instruction addresses and the integer unit generates
data accesses. When the memory management
unit needs to perform a memory access, it issues a
virtual address. This virtual address is then
translated and the physical address passed to the
cache. In the event of the cache being inhibited or a




cache miss, the 32 bit physical address is then
passed to the system interface for retrieval.

MMU Operations
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When the MMU passes the address to the cache,
the lower bits from the virtual address are the same
as the physical address; these bits go directly to the
cache as the index into the tag array. To perform
the translation of the upper address bits, the MMU
may access up to three of its translation lookaside
buffers (TLB). Each of the three TLBs utilize a least
recently used (LRU) algorithm for keeping storing
information. The MMU keeps the last four
instruction accesses in a fully associative four-entry
instruction translation lookaside buffer (ITLB). The
ITLB capitalizes on the fact of locality of reference
for sequential programs. It also reduces contention
for the MMU between instruction and data accesses.

If the ITLB lookup is a miss, it will check the 256
entry two-way set associative UTLB (unified data
and instruction TLB) and four-entry BTLB (block
TLB) . These lookups will guarantee a hit for most
address translations, and the corresponding upper
physical address bits will be sent to the cache as the
cache tag. When all TLB's produce a miss, the
MMU must access page tables in memory to
perform the necessary virtual to real address
translation.

By using a physical address to access the cache
instead of a virtual address, the MPC601 is able to
avoid the update and coherency problem of having
two virtual addresses that map to the same physical
address. And the extra translation time needed to
map from virtual to physical address is not a
problem because the translation is performed during
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the execute stage of 1U; no extra clock cycles are
needed.

Block addressing is available for applications that
require contiguous memory space (such as a
read-only memory [ROM]; block sizes can range
from 128kB to 8MB.

Cache Unit

Much has already been said about the cache unit
(Figure 4).
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It is a 32kB, eight-way set associative cache and
uses a LRU replacement algorithm. It is unified, that
is, both data and instructions reside in the same
cache, thereby allowing for a simple implementation.
Cache lines are 64 bytes, divided up into two,
eight-word (32 bit) sectors. Each sector can be
snooped, loaded, cast-out, or invalidated.

Although the cache is designed to use a write-back
policy, the ability to cache, the write policy, and the
memory coherency are controllable at the page and
block level. Write operations can be performed on
data sizes as small as a byte, and a
read-modified-write can occur in as little as one
cycle.

When the instruction unit requests the next
instruction, the cache will attempt to fill up the
instruction queue with as many as eight instructions
(the full size of the queue). Therefore, if the queue
is empty, an entire sector can be loaded into the
queue in paraliel.



The cache has a dedicated port for instruction fetch
and load/stores as well as a dedicated port for
snooping operations. By having a dedicated port for
snooping, it does not require additional clock cycles
to perform a snoop unless the snooping operation
results in a cache hit. A snooping cache hit would
result in extra cycles needed to perform the snoop.

The cache has its own retry queues to buffer floating
point, integer, and instruction fetch accesses, and
arbitration is performed to determine the highest
priority cache requests. The priority for cache
request is cache reloads (highest), snoops, floating
point stores, integer accesses, and instruction
fetches.

By supporting snooping and MESI protocols, cache
coherency can be achieved in high performance
multiprocessor applications.

Memory Unit

The memory unit is used to buffer operations
between the cache and the system interface.
Operations which depend on the memory unit are
load and store cache misses, cache replacement
operations, and page table search operations (TLB
misses). The memory unit employs a two element
read queue and a three element write queue to
perform the necessary buffering.

Each element in the queue is eight words, or one
cache line of data. The write queue has an element
dedicated to snooping operations to guarantee a
high priority for bus snoops.

Although all loads and stores are issued and
translated in program order, ones that hit in the
cache are likely to complete before ones that miss,
therefore loads and stores can complete out of strict
deterministic order. The MPC601 does address
checking for translated loads and stores and
prevents out of order loads and stores which have
matching addresses. It is also possible to force strict
program order of loads and stores by using the
synchronization instructions provided by the 601.

System Interface

The system interface is the MPC601's connection
from the memory unit to the outside world. The
interface consists of a 64 bit data bus, a 32 bit
address bus , and bus arbitration and other control
signals. The system interface implemented by the
601 is based on the system interface of Motorola's
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88110 RISC processor. Because of the 601's large
on-chip write-back policy cache, most of the system
operations are burst-memory reads followed by
burst-memory writes (cache writebacks). Other
operations include 1/O operations, non-cache
memory accesses, and snooping operations.

Address arbitration is provided to allow memory
accesses in multiprocessor configurations. The
system is flexible enough to allow different external
arbitrations mechanisms to exist. The MPC601 also
has additional multiprocessor support through the
external control of the on-chip cache and the TLB,
as well as expandability to a second external cache.

The MPC601 is somewhat unlike other RISC chips
in that it aliows for misaligned loads and stores.

Software Environments

Managing and controiling the software development
life cycle depends greatly on the tools set used.

Operating Systems

In today's market, having a fast chip is not enough to
be successful. There must also be a large number
of applications available. Therefore, the operating
systems that the PowerPC will run becomes crucial.
As IBM learned with the introduction of OS/2 1.0,
users are not very willing to jump to a new hardware
platform if there are few applications for the new
platform (and the current platform does not provide
backward compatibility with existing applications!)

Currently,seven operating systems are being ported
to run on the PowerPC: Apple's System 7, IBM's
AIX and OS/2 operating systems as well as their
embedded operating sytem OS Open, Sun's Solaris,
PowerOpen, and Pink - the object-oriented operating
system under development by Taligent. There has
also been discussion about Novell's Netware, UNIX
System V, and Windows NT being under
development.

PowerOpen is probably the most interesting of the
six operating systems. It is a standard of application
programming interfaces (AP!s) and application
binary interfaces (ABIs) developed by the
PowerOpen Association, a consortium of companies
supporting the PowerPC. PowerOpen will make it
possible for different user interfaces (Windows,
UNIX, Mac OS) and applications to coexist on the
same PowerPC system by providing a standard set
of APIs. The common APls will allow application




software to have hardware independent calling
routines.

Additionally, Insignia Solutions, which currently
provides emulation technology for Windows
application to run under Windows NT, is working on
a port of its SoftPC X86 and Macintosh emulation
technology to run natively on a PowerPC chip.

These and other emulation companies expect to
achieve 486 levels of performance of X86 software
under emulation on a PowerPC.

With such a choice of operating systems and
user-interfaces that will be available on the PowerPC
platform, a large body of applications will exist to
entice users to jump to the new hardware.

But the real "power" of the PowerPC will show forth
when applications are written to run natively, without
emulation, to make the maximum use of the pipeline
and independent parallel execution units and higher
clock speed.

Development Tools

In addition to operating systems, there have been a
number of announced tool developers that have
announced plans for PowerPC support. The tools
range from hardware debuggers to compilers to
simulators to operating systems. IBM and Motorola
have put together a catalog of development tools to
advertise the support of third party vendors for these
tools, which are essential for program development.
Unlike the POWER architecture, which was limited
to IBM machines, the PowerPC architecture will
need new compilers, debuggers, assemblers,
GUI-builders, and other tools to facilitate
development by third-parties. Even IBM, who
previously had treated its XLC compilers as
company jewels, has announced plans to sell the
compilers as packages to run on any PowerPC
platform (i.e.. not an IBM box). The IBM AIX XLC
Compiler features advanced optimization techniques
which were refined for the IBM RISC/6000
workstation family. Although many of the techniques
used in the RS/6000 C Compiler are well-known and
have been used in other optimizing compilers,
several new optimizations and many improvements
on existing techniques have been added. This
should allow consumers to pick and choose the
hardware and software they desire like never before.
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Conclusion

The PowerPC architecture combines advanced
reduced instruction computing and pipelining
techniques into a small, low-power CMOS chip. It
has advanced pipelining, independent execution
units which allow up to three instructions to be
executed in parallel, while at the same time having
simple static branching techniques and a relatively
simple unified data and instruction cache. These
simplified design techniques have left room for a
relatively large cache (32k) to provide a high cache
hit ratio. And because the chip was designed
without pushing the fabrication technology to the
limit, the PowerPC family of processors has room to
grow and add higher performance features.

The 64 bit data path, the muitiprocessing support
with cache snooping, and the 52 bit virtual address
bus show that the MPC801 is ready to handle the
future of computing technology. At the same time,
the large number of operating systems and
emulation tools being ported to the PowerPC will
provide a needed application base for user
acceptance.

Although it will be difficult for the
IBM/Apple/Motorola alliance to wrestle the market
lead from today's 486/Pentium Intel systems, the
low cost, high performance, and room for increased
performance of the MPC601 will have an impact in
the computer industry for years to come.
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