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Chapter 3 Topics

3.1   Machine characteristics and performance

3.2   RISC vs. CISC

3.3   A CISC microprocessor: The Motorola MC68000

3.4   The SPARC: a RISC architecture
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Practical Aspects of Machine Cost-
Effectiveness

 Cost for useful work is fundamental issue

 Mounting, case, keyboard, etc. are dominating the cost of
integrated circuits

 Upward compatibility preserves software investment
 Binary compatibility

 Source compatibility

 Emulation compatibility

 Performance: strong function of application
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Performance Measures

 MIPS: Millions of Instructions Per Second
 Same job may take more instructions on one machine than on

another

 MFLOPS: Million Floating Point OPs Per Second
 Other instructions counted as overhead for the floating point

 Whetstones: Synthetic benchmark
 A program made-up to test specific performance features

 Dhrystones: Synthetic competitor for Whetstone
 Made up to “correct” Whetstone’s emphasis on floating point

 SPEC: Selection of “real” programs
 Taken from the C/Unix world
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Quantitative Performance Measurement

€ 

Speedup =
SpeedOnNewRoute
SpeedOnOldRoute

=
Snew
Sold

=
46
34

=1.35

Consider two auto routes, the old one, which allowed an
average speed of 34 mph, and the new one, which permitted
46 mph. What is the speedup of the new one over the old one?

Conventionally the speedup is calculated as follows:

€ 

%Speedup =
Snew − Sold

Sold
×100 =

46 − 34
34

×100 =
12
34

×100 = 35%

For a speedup of 0.35, or 35%. 
Alternately, the % speedup can be calculated directly:
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Quantitative Performance Measurement

€ 

Speedup =
Snew
Sold

=
1

Tnew
1
Told

=
Told
Tnew

=
96
71

=1.35, or 35%

Many measurements are in terms of the time, T, it takes to accomplish
some task. Recall that Time, T, is the reciprocal of Speed, S= 1/T. If the
improvement is measured by recording travel time rather than travel
speed the equation changes as follows:

€ 

%Speedup =
Told −Tnew
Tnew

×100 =
96 − 71
71

×100 =
25
71
×100 = 35%

Once again, the % speedup can be calculated directly:
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A Classic Example
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Getting Finer-Grained

 The execution time can be calculated from the count of how many
instructions have executed, IC, the average number of clock cycles per
instruction, CPI, and the clock period,  τ.

 This is an important equation that will be used throughout the text.

€ 

Execution time = T = IC ×CPI × τ
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CISC Versus RISC Designs

 CISC: Complex Instruction Set Computer
 Many complex instructions and addressing modes

 Some instructions take many steps to execute

 Not always easy to find best instruction for a task

 RISC: Reduced Instruction Set Computer
  few, simple instructions, addressing modes

 usually one word per instruction

 may take several instructions to accomplish what CISC can do in one

 complex address calculations may take several instructions

 usually has load-store, general register ISA



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Design Characteristics of RISCs

 Simple instructions can be done in few clocks
 Simplicity may even allow a shorter clock period

 A pipelined design can allow an instruction to complete in every
clock period

 Fixed length instructions simplify fetch & decode

 The rules may allow starting next instruction without necessary
results of the previous
 Unconditionally executing the instruction after a branch

 Starting next instruction before register load is complete
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Other RISC Characteristics

 Prefetching of instructions. (Similar to I8086)

 Pipelining: beginning execution of an instruction before the previous
instruction(s) have completed. (Will cover in detail in Chapter 5.)

 Superscalar operation—issuing more than one instruction
simultaneously. (Instruction-level parallelism. Also covered in Chapter
5.)

 Delayed loads, stores, and branches. Operands may not be available
when an instruction attempts to access them.

 Register Windows—ability to switch to a different set of CPU registers
with a single command. Alleviates procedure call/return overhead.
Discussed with SPARC in this Chapter.
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Tbl. 3.1  Developing an Instruction Set
Architecture

 Memories: structure of data storage in the computer
 Processor state registers
 Main memory organization

 Formats and their interpretation: meanings of register
fields
 Data types
 Instruction format
 Instruction address interpretation

 Instruction interpretation: things done for all instructions
 The fetch-execute cycle
 Exception handling (sometimes deferred)

 Instruction execution: behavior of individual instructions
 Grouping of instructions into classes
 Actions performed by individual instructions
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CISC: The Motorola MC68000

 Introduced in 1979

 One of first 32 bit microprocessors
 Means that most operations are on 32 bit internal data

 Some operations may use different number of bits

 External data paths may not all be 32 bits wide
 MC68000 had a 24 bit address bus

 Complex Instruction Set Computer - CISC
 Large instruction set

 14 addressing modes
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Fig. 3.1  MC68000 Programmer’s Model
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Features of the 68000 Processor State

 Distinction between 32 bit data registers and 32 bit address
registers

 16 bit instruction register
 Variable length instructions handled 16 bits at a time

 Stack pointer registers
 User stack pointer is one of the address registers

 System stack pointer is a separate single register
 Discuss: Why a separate system stack.

 Condition code register: System & User bytes
 Arithmetic status (N, Z, V, C, X) is in user status byte

 System status has Supervisor & Trace mode flags, as well as the
Interrupt Mask
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RTN Processor State for the MC68000

D[0..7]〈31..0〉: General purpose data registers;
A[0..7]〈31..0〉: Address registers;
A7´〈31..0〉: System stack pointer;
PC〈23..0〉: Program counter in original MC68000
IR〈15..0〉: Instruction register;
Status〈15..0〉: System status byte and user status byte;
SP := A[7]: User stack pointer, also called USP;
SSP := A7´: System stack pointer;
C := Status〈0〉: V := Status〈1〉: Carry and oVerflow flags;
Z := Status〈2〉: N := Status〈3〉: Zero and Negative flags;
X := Status〈4〉: Extend flag;
INT〈2..0〉 := Status〈10..8〉: Interrupt mask in system status byte;
S := Status〈13〉: T := Status〈15〉:Supervisor state and Trace mode flags;



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Main Memory in the MC68000

 The word and longword forms are “big-endian”
 The lowest numbered byte contains the most significant bit (big

end) of the word

 Words and longwords have “hard” alignment constraints not
described in the above RTN
 Word addresses must end in one binary 0
 Longword addresses must end in two binary zeros

Main memory:
Mb[0..224-1]〈7..0〉: Memory as bytes
Mw[ad]〈15..0〉 := Mb[ad]#Mb[ad+1]: Memory as words
Ml[ad]〈31..0〉 := Mw[ad]#Mw[ad+2]: Memory as long words
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MC68000 Supports Several Operand Types

 Like many CISC machines, the 68000 allows one instruction to
operate on several types
 MOVE.B for bytes, MOVE.W for words, and MOVE.L for longwords;

also ADD.B, ADD.W, ADD.L, etc.

 The default, ADD, for example, is Word operands.

 Operand length is encoded into the instruction word

 Bits coding operand type vary with instruction
 For use with RTN descriptions, we assume a function

d := datalen(IR) that returns 1, 2, or 4 for operand length
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Fig. 3.2  Some MC68000 Instruction Formats
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General Form of Addressing Modes in the
MC68000

 A general address of an operand or result is specified by a 6-bit
field with mode and register numbers

• Not all operands and results can be specified by a general
address: some must be in registers.

• Not all modes are legal in all parts of an inst.
• Exception: when specifying the destination of a MOVE

instruction the mode and reg fields are reversed.

5 4 3 2 1 0
mode reg

Provides access paths to operands
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MC68000 Addressing Modes

5 4 3 2 1 0

mode reg

Name  Mode Reg. Assembler Extra Brief description
  Syntax Words  
Data reg. direct 0 0-7   Dn 0 Dn
Addr. reg. direct 1 0-7   An 0 An
Addr. reg. Indirect 2 0-7  (An) 0 M[An]
Autoincrement 3 0-7 (An)+ 0 M[An];An←An+d
Autodecrement 4 0-7 -(An) 0 An←An-d;M[An]
Based 5 0-7 disp16(An) 1 M[An+disp16]
Based indexed short 6 0-7 disp8(An,XnLo) 1 M[An+XnLo+disp8]
Based indexed long   6 0-7 disp8(An,Xn) 1 M[An+Xn+disp8]
Absolute short 7 0 addr16 1 M[addr16]
Absolute long 7 1 addr32 2 M[addr32]
Relative 7 2 disp16(PC) 1 M[PC+disp16]
Rel. indexed short   7 3 disp8(PC,XnLo) 1 M[PC+XnLo+disp8]
Rel. indexed long  7 3 disp8(PC,Xn) 1 M[PC+Xn+disp8]
Immediate 7 4 #data    1-2 data
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RTN Description of MC68000
Addressing

 The addressing modes interpret many items
 The instruction: in the IR register

 The following 16 bit word: described as Mw[PC]

 The D and A registers in the CPU

 Many addressing modes calculate an effective memory address

 Some modes designate a register

 Some modes result in a constant operand

 There are restrictions on the use of some modes

5 4 3 2 1 0
mode reg
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RTN Formatting for Effective Address
Calculation

 Either an A or a D register can be used as an index
 A 4-bit field in the 2nd instruction word specifies the index register
 Low order 8-bits of 2nd word are used as offset
 Either 16 or 32 bits of index register may be used

XR[0..15]〈31..0〉 :=
D[0..7]〈31..0〉 # A[0..7]〈31..0〉: Index register can be D or A;

xr〈3..0〉 := Mw[PC]〈15..12〉: Index specifier for index mode;
wl := Mw[PC]〈11〉: Short or long index flag;
dsp8〈7..0〉 := Mw[PC]〈7..0〉: Displacement for index mode;
index := (  (wl=0) → XR[xr]〈15..0〉: Short or

   (wl=1) → XR[xr]〈31..0〉): long index value;

disp8 = ldispd/a    Index reg     w/l   0 0 0

0: index is in data reg.
1: index is in address reg.

0 = 16 bit index
1 = 32 bit index

15   14   13   12    11   10 9 8  7                                      0



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Modes That Calculate a Memory
Address Using a Register

 md and rg are the 3-bit mode and
reg. fields.

 ea stands for effective address

ea(md, rg) := (
   (md = 2) → A[rg〈2..0〉]:                  Mode 2 is register indirect;
   (md = 3) →    Mode 3 is

(A[rg〈2..0〉]; A[rg〈2..0〉] ← A[rg〈2..0〉] + d):          autoincrement;
   (md = 4) →    Mode 4 is

(A[rg〈2..0〉] ← A[rg〈2..0〉] - d; A[rg〈2..0〉]):           autodecrement;
   (md = 5) →    Mode 5 is based

(A[rg〈2..0〉] + Mw[PC]; PC ← PC + 2):    or offset addressing;
   (md = 6) →    Mode 6 is based

(A[rg〈2..0〉] + index + dsp8; PC ← PC + 2):        indexed addressing;

5 4 3 2 1 0
mode reg

5 4 3 2 1 0
010 - 110 000 - 111



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Mode 7 Uses the reg Field to
Expand the Number of Modes

 These modes still calculate a memory address

ea (md, rg) :=
 . . .
(md = 7 ∧ rg = 0) →    Mode 7, register 0 is
   (Mw[PC]{sign extend to 32 bits}; PC ← PC + 2):              short absolute;
(md = 7 ∧ rg = 1) →    Mode 7, register 1 is
   (Ml[PC]; PC ← PC + 4):                      long absolute;
(md = 7 ∧ rg = 2) →    Mode 7, register 2 is
   (PC + Mw[PC]{sign extend to 32 bits};                     program counter

PC ← PC + 2):       relative addressing;
(md = 7 ∧ rg = 3) →    Mode 7, register 3 is
   (PC + index + dsp8; PC ← PC + 2) ):       relative indexed.

5 4 3 2 1 0
1   1   1 reg
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Fig. 3.3  Mode 2: Address
Register Indirect

 Same picture for autoincrement or decrement
 Address register incremented after address obtained in autoincrement

 Address register decremented before address obtained in autodecrement

Address register indirect
010 Reg

68000
Registers

A0
...

A7

. . .

Operand

Main
memory

Address

Ex: MOVE (A6), ...

5 4 3 2 1 0
0   1   0 reg
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Fig. 3.4  Mode 6: Based Indexed
Addressing

 Three things are added to get the address

Mode 6: Based indexed addressing

110 Reg

68000
Registers

A0

...

A7

. . .

Operand

Main
memory

Base address

Ex: MOVE.W LDISP (A6, D4), ...

+

disp8 = ldispd/a    Index reg     w/l   0 0 0

•••

•••

D0-D7
A0-A7Index (16 or 32)

0: index is in data reg.
1: index is in address reg.

0 = 16 bit index
1 = 32 bit index

15   14   13   12    11   10 9 8  7                                      0

5 4 3 2 1 0
1   1   0 reg
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 Modes 7-0 and 7-1: Absolute
Addressing

 Absolute addresses can be 16 or 32 bits

Absolute short addressing

111 000. . .

Operand

Main
memory

Ex: MOVE.B PRINTERPORT.W,  ...
15                                                                                           0

addr16
(Sign extend to 32-bits)

Absolute long addressing

111 001. . .

15                                                                                           0

addr32Hi

addr32Lo Concat.

Ex: MOVE.W INTVECT.L,  ...

5 4 3 2 1 0

1   1   1 000 (16-bit)
001 (32-bit)
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Mode 7-3 Relative Indexed
Addressing

 Same as indexed mode but uses PC instead of A register as
base

5 4 3 2 1 0
1   1   1 0   1   1

Relative indexed addressing

111 011
Program counter

. . .

Operand

Main
memory

Ex: MOVE.W LDISP (PC, D4), ...

+

disp8 = ldispd/a    Index reg     w/l   0 0 0

D0-D7
A0-A7Index (16 or 32)

0: index is in data reg.
1: index is in address reg.

0 = 16 bit index
1 = 32 bit index

15   14   13   12    11   10 9 8  7                                      0
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memval(md, rg) := A memory address is
   ( (md〈2..1〉 = 1) ∨ (md〈2..1〉 = 2) ∨ (md〈2..0〉 = 6) ∨    used with these
   ((md〈2..0〉 = 7) ∧ (rg〈2〉 =0)) ):       modes only;
opnd(md, rg) := ( The operand length in
   (d=1) → opndb(md, rg): (d=2) → opndw(md, rg):       the instruction tells
   (d=4) → opndl(md, rg) ):     which to use.
opndl(md, rg)〈31..0〉 := ( A long operand can be
                                           . . .      ): . . .
opndw(md, rg)〈15..0〉 := ( A word operand is
   memval(md, rg) → Mw[ea(md, rg)]〈15..0〉:     similar but needs only
   md =0 → D[rg]〈15..0〉:    a 16 bit immediate
   md = 1 → A[rg]〈15..0〉:    following the
   (md = 7 ∧ rg = 4) → (Mw[PC]〈15..0〉: PC ← PC+2) ):    instruction word;
opndb(md, rg)〈7..0〉 := ( Byte operands
                                               . . .  . . .
   (md = 7 ∧ rg = 4) → (Mw[PC]〈7..0〉: PC ← PC+2) ):    instruction word.

Operands in Registers or Memory can
Have Different Lengths
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Modes 0 and 1: Register Direct
Addressing

 The register itself provides a place to store a result or a
place to get an operand

 There is no memory address with this mode

D0
Data register direct

000 Reg

Data
Registers

...
D7

A0

...
A7

. . . 001 Reg. . .
Address regiser direct

Operand Operand

Address
Registers

Ex: MOVE D6, ... Ex: MOVE A6, ...

5 4 3 2 1 0
0  0  0 (D)
0  0  1 (A)

reg
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Fig. 3.5  Mod 7-4:  Immediate Addressing:
Operands are stored in the instruction

 Data length is specified by the opcode field, not the
Mode/Reg field

111 100. . .

15                                                            0

value16Hi

value16Lo
Ex: MOVE.W #1234,  ...

111 100. . .

15                                                            0

value16

Ex: MOVE.L #12348678,  ...

Word Longword

111 100. . .

15                   8    7                                 0

value8

Byte

00000000

Ex: MOVE.B #12,  ...

Instruction word and 1 or 2 following words

5 4 3 2 1 0
1   1   1 1   0   0
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Not Every Addressing Mode Can Be Used for Results

 The MC68000 disallows relative addressing (md7 rg 2 or 3) for results

 This is captured in RTN by defining a function that is true (=1) if the
memory address specified by the mode is legal for results

 Register immediate is also legal for results, but will be handled
separately

rsltadr(md, rg) := memval(md, rg) ∧ ¬(md=7 ∧(rg=2∨rg=3)):
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Result Modes Must Have a Place to Write Data:
Memory or Register

rsltl(md, rg)〈31..0〉 := (        32 bit result;
   rsltadr(md, rg) → Ml[ea(md, rg)]〈31..0〉:
   md = 0 → D[rg]〈31..0〉:
   md = 1 → A[rg]〈31..0〉 ):
rsltw(md, rg)〈15..0〉 := (        16 bit result;
   rsltadr(md, rg) → Mw[ea(md, rg)]〈15..0〉:
   md = 0 → D[rg]〈15..0〉:
   md = 1 → A[rg]〈15..0〉 ):
rsltb(md, rg)〈7..0〉 := (        8 bit result.
   rsltadr(md, rg) → Mb[ea(md, rg)]〈7..0〉:
   md = 0 → D[rg]〈7..0〉:
   md = 1 → A[rg]〈7..0〉 ):    
rslt(md, rg) := (        The result length in the
   (d=1) → rsltb(md, rg): (d=2) → rsltw(md, rg): instruction tells
   (d=4) → rsltl(md, rg) ): which to use.
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MC68000 Instruction Interpretation

 Instruction interpretation is simple when exceptions are ignored

• Instructions are fetched 16 bits at a time
• PC is advanced by 2 as each 16-bit word is fetched
• Addressing mode may advance it a total of  2 or 4 or more

words, under command from the control unit.

Instruction_interpretation := (
Run → ( (IR〈15..0〉 ← Mw[PC]〈15..0〉: PC ← PC + 2);

instruction_execution ); ):
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Tbl. 3.3   Data Movement Instructions in the
MC68000

 The op code location and size depends on the instruction
(Compare to SRC).

Inst. Operands First Instruction Word X N Z V C   Operation      Size

MOVE.B EAs, EAd 0001ddddddssssss - x x 0 0 dst ← src byte
MOVE.W EAs, EAd 0011ddddddssssss - x x 0 0 dst ← src word
MOVE.L EAs, EAd 0010ddddddssssss - x x 0 0 dst ← src long
MOVEA.W EAs, An 0011rrr001ssssss - - - - - An ← src word
MOVEA.L EAs, An 0010rrr001ssssss - - - - - An ← src long
LEA.L EAc, An 0100aaa111ssssss - - - - - An ← EA address
EXG Dx, Dy 1100xxx101000yyy - - - - - Dx ↔ Dy long
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RTN for a Typical MC68000 Move Instruction

 The temporary register tmp is used because every invocation of
opnd() causes another fetch

tmp〈31..0〉:
move (:= op〈3..2〉 := 0) → (

tmp ← opnd(md1, rg1);
(  Z ← (tmp=0): N ← (tmp<0): V ← 0: C ← 0  ):
rslt(md2, rg2) ← tmp ):

• The instruction format for Move includes mode and register for
source and destination addresses
op〈3..0〉 := IR〈15..12〉: rg1〈2..0〉 := IR〈2..0〉: md1〈2..0〉 := IR〈5..3〉: 
rg2〈2..0〉 := IR〈11..9〉: md2〈2..0〉 := IR〈8..6〉: 
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MC68000 Integer Arithmetic and Logic
Instructions

Op. Operands     Inst. word X N Z V C  Operation Sizes

ADD EA,Dn 1101rrrmmmaaaaaa x x x x x  dst←dst+src b, w, l
SUB EA,Dn 1001rrrmmmaaaaaa x x x x x  dst←dst-src b, w, l
CMP EA,Dn 1011rrrxxxaaaaaa - x x x x  dst-src b, w,l
CMPI #dat,EA 00001100wwaaaaaa - x x x x  dst-imm.data b, w, l
MULS EA, Dn 1100rrr111aaaaaa - x x 0 0  Dn←Dn*src l←w*w
MULU EA,Dn 1100rrr011aaaaaa - x x 0 0  Dn←Dn*src l←w*w
DIVS EA,Dn 1000rrr111aaaaaa - x x x 0  Dn←Dn/src l←l/w
DIVU EA,Dn 1000rrr011aaaaaa - x x x 0  Dn←Dn/src l←l/w
AND EA,Dn 1100rrrmmmaaaaaa - x x 0 0  dst←dst∧src b, w, l
OR EA,Dn 1000rrrmmmaaaaaa - x x 0 0  dst←dst∨src b, w, l
EOR EA,Dn 1011rrrwwwaaaaaa - x x 0 0 dst←dst⊕src b, w, l
CLR EAs 01000010wwaaaaaa - 0 1 0 0  dst←0 b, w, l
NEG EAs 01000100wwaaaaaa - x x x x  dst←0-dst b, w, l
TST EAs 01001010wwaaaaaa - x x 0 0 dst−0 b, w, l
NOT EAs 01000110wwaaaaaa - x x x x dst← ¬dst b, w, l

aaaaaa is the 6-bit addressing mode specifier mmmrrr
www: B–100, W–101, L–110 
xxx: B–000, W–001, L–010 
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Notes on MC68000 Arithmetic and Logic
Instructions

 Only one operand uses EA

 The other operand is always accessed by Data register direct

 The 3-bit mmm field  specifies whether D is the source or
destination, and whether it is B, W, or L

Byte Word Long Destination

000 001 010     Dn

100 101 110     EA

Ex: SUB EA, Dn:       1011 rrr mmm aaaaaa

Note: There are several exceptions to the rule above. See text and Mfr. Data sheet.

All 2-operand ALU instructions are either D →  EA or  EA  →  D.  Which is it?

  op    Dn   tbl abv.   EA
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RTN Description of a Typical MC68000
Arithmetic Instruction

 This definition does not handle the condition codes

• Subtract is a typical arithmetic instruction
• Need a temporary register to hold an address

tmp〈31..0〉: temporary register for address

sub (:= op=9) → (
(md2〈2〉 =0) → D[rg2] ← D[rg2] - opnd(md1, rg1):
(md2〈2〉 =1) → (memval(md1, rg1) → (tmp ← ea(md1, rg1);

                                         M[tmp] ← M[tmp] - D[rg2]  ):
        ¬memval(md1, rg1) → rslt(md1, rg1) ← rslt(md1, rg1) - D[rg2])

):
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MC68000 Arithmetic Shifts and
Single Word Rotates

 d is L or R for left or right shift, respectively
 EA form has shift count of 1
 ww is word size: 00–Byte, 01–Word, 10–Long Word

c
x 0

c
x

ASL

ASR
Dn

c

ROL

ROR

c

Dn

Op. Operands   Inst. word XNZVC

ASd EA 1110000d11aaaaaa xxxxx
ASd #cnt,Dn 1110cccdww000rrr xxxxx
ASd Dm,Dn 1110RRRdww100rrr xxxxx

ROd EA 1110011d11aaaaaa -xx0x
ROd #cnt,Dn 1110cccdww011rrr -xx0x
ROd Dm,Dn 1110RRRdww111rrr -xx0x
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MC68000 Logical Shifts and Extended Rotates

 Field ww specifies byte, word, or longword

 N & Z set according to result, C= last bit shifted out

c
x 0

c
x0

LSL

LSR
Dn

x
c

x
c

ROXR

ROXL

Dn

Op. Operands Inst. word XNZVC

LSd EA 1110001d11aaaaaa xxx0x
LSd #cnt,Dn 1110cccdww001rrr xxx0x
LSd Dm,Dn 1110RRRdww101rrr xxx0x

ROXd EA 1110010d11aaaaaa xxx0x
ROXd #cnt,Dn 1110cccdww010rrr xxx0x
ROXd Dm,Dn 1110RRRdww110rrr xxx0x
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MC68000 Conditional Branch and Test
Instructions

 disp is dddddddd unless dddddddd =0, in which case it is
contained in the extra word DDDDDDDDDDDDDDDD

 DBcc is used for counted loops with an optional end condition.
 "Decrement and branch until cond."

 Scc sets a byte to the outcome of a test

Op. Operands         Inst. word       Operation

Bcc disp         0110ccccdddddddd   if (cond) then
          DDDDDDDDDDDDDDDD    PC ← PC + disp
                       
DBcc Dn,disp          0101cccc11001rrr  if ¬(cond) then Dn←Dn-1

     if (Dn≠-1) then PC←PC+disp)
                         else PC ← PC + 2
                        
Scc EA         0101cccc11aaaaaa   if (cond) then (EA) ← FFH

else (EA) ← 00H
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Conditions That Can Be Evaluated for Branch,
Etc.

Code Meaning Name Flag expression
            
0000 true T 1
0001 false F 0
0100 carry clear CC C
0101 carry set CS C
0111 equal EQ Z
0110 not equal NE Z
1011 minus MI N
1010 plus PL N
0011† low or same LS C+Z
1101 less than LT N·V+N·V
1100 greater or equal GE N·V+N·V
1110 greater than GT N·V·Z+N·V·Z
1111 less or equal LE N·V+N·V+Z
0010† high HI C·Z
1000 overflow clear VC V
1001 overflow set VS V
†Assumes unsigned operands
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Conditional Branches First Set Condition Codes,
Then Branch

 EQ tests the right condition codes for =0, as above, or A=B
following a compare, CMP A,B

if ( X = 0 ) goto LOC

TST X ;ands X with itself and sets N and Z
BEQ LOC ;branch to LOC if X=0
.
.
.

LOC:
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MC68000 Unconditional Control Transfers

 Subroutine links push the return address onto the stack pointed
to by A7 = SP

Op. Operands Inst.word Operation
                     
BRA disp          01100000dddddddd   PC ← PC + disp
               DDDDDDDDDDDDDDDD     

BSR disp     01100001dddddddd   -(SP) ← PC;  PC ← PC + disp
               DDDDDDDDDDDDDDDD      
                     
JMP EA     0100111011aaaaaa   PC ← EA
                     
JSR EA          0100111010aaaaaa   -(SP) ← PC;  PC ← EA
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MC68000 Subroutine Return Instructions

 Subroutine linkage uses stack for return address

 LINK and UNLK allocate and de-allocate multiple word stack
frames

Op. Operands Inst. word Operation
                     
RTR          0100111001110111 CC ← (SP)+; PC ← (SP)+
                        
RTS             0100111001110101 PC ← (SP)+
                     
LINK An,disp           0100111001010rrr -(SP) ← An; An ← SP;
               DDDDDDDDDDDDDDDD SP ← SP + disp
                        
UNLK An          0100111001011rrr  SP ← An; An ← (SP)+
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Figure 3.6 Example Program to Search an
Array

 Program searches an array of bytes to find the first
carriage return, ASCII code 13

CR EQU 13 ;Define return character.
LEN EQU 132 ;Define line length.
  ORG $1000 ;Locate LINE at 1000H.
LINE DS.B LEN ;Reserve LEN bytes of storage.
  MOVE.B #LEN-1,D0 ;Initialize D0 to count-1.
  MOVEA.L #LINE,A0 ;A0 gets start address of array.
LOOP CMPI.B (A0)+,#CR ;Make the comparison.
  DBEQ  D0,LOOP ;Double test: if LINE[131-D0]≠13
      <next instruction>  ;  then decr. D0; if D0≠-1 branch
        ;  to LOOP, else to next inst.
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Pseudo Operations in the MC68000 Assembler

 A Pseudo Operation is one that is performed by the assembler at
assembly time, not by the CPU at run time.

 EQU defines a symbol to be equal to a constant. Substitution is made
at assemble time.
Pi EQU 3.14

 DS.B (.W or .L) defines a block of storage
 Any label is associated with the first word of the block

Line     DS.B    132

 The program loader (part of the operating system) accomplishes this

 -more-
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Pseudo Operations in the MC68000 Assembler
(cont’d.)

 #symbol indicates the value of the symbol instead of a location
addressed by the symbol
MOVE.L  #1000, D0 ;moves 1000 to D0

MOVE.L    1000, D0 ;moves value at addr. 1000 to D0

 The assembler detects the difference and assembles the appropriate
instruction.

 ORG specifies a memory address as the origin where the
following code will be stored
Start ORG $4000 ;next instruction/data will be loaded at

 ;address 4000H.

 The Motorola assembler uses $ in front of a number to indicate
hexadecimal

 Character constants are in single quotes: ‘X’
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Review of Assembly, Link, Load, and Run
Times

 At assemble time, assembly language text is converted to (binary)
machine language
 They may be generated by translating instructions, hexadecimal or

decimal numbers, characters, etc.

 Addresses are translated by way of a symbol table

 Addresses are adjusted to allow for blocks of memory reserved for arrays,
etc.

 At link time, separately assembled modules  are combined & absolute
addresses assigned

 At load time, the binary words are loaded into memory

 At run time, the PC is set to the starting address of the loaded module.
(Usually the O.S. makes a jump or procedure call to that address.)
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MC68000 Assembly Language Example: Clear
a Block

 Subroutine expects block base in A0, count in D0

 Linkage uses the stack pointer, so A7 cannot be used for
anything else

MAIN    …
   MOVE.L #ARRAY, A0 ;Base of array
   MOVE.W #COUNT, D0 ;Number of words to clear
   JSR CLEARW ;Make the call
   …

CLEARW    BRA LOOPE ;Branch for init. Decr.
LOOPS    CLR.W (A0)+ ;Autoincrement by 2 .
LOOPE    DBF D0, LOOPS ;Dec.D0,fall through if -1

   RTS ;Finished.
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Exceptions: Changes to Sequential
Instruction Execution

 Exceptions, also called interrupts, cause next instruction fetch
from other than PC location
 Address supplying next instruction called exception vector

 Exceptions can arise from instruction execution, hardware
faults, and external conditions
 Externally generated exceptions usually called interrupts

 Arithmetic overflow, power failure, I/O operation completion, and
out of range memory access are some causes

 A trace bit =1 causes an exception after every instruction
 Used for debugging purposes
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Steps in Handling MC68000 Exceptions

 1) Status change
 Temporary copy of status register is made

 Supervisor mode bit S is set, trace bit T is reset

 2) Exception vector address is obtained
 Small address made by shifting 8 bit vector number left 2

 Contents of the longword at this vector address is the address of the
next instruction to be executed

 The exception handler or interrupt service routine starts there

 3) Old PC and Status register are pushed onto supervisor stack,
addressed by A7’ = SSP

 4) PC is loaded from exception vector address

 Return from handler is done by RTE
 Like RTR except restores Status reg. instead of CCs
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Exception Priorities

 When several exceptions occur at once, which exception vector
is used?

 Exceptions have priorities, and highest priority exception
supplies the vector

 MC68000 allows 7 levels of priority

 Status register contains current priority

 Exceptions with priority ≤ current are ignored
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Exceptions and Reset Both Affect Instruction
Interpretation

 More processor state needed to describe reset and exception
processing

Reset: Reset input
exc_req: Single bit exception request
exc_lev〈2..0〉: Exception Level
vect〈7..0〉 : Vector address for this exception
exc := exc_req ∧ (exc_lev〈2..0〉 > INT〈2..0〉): There is a request, and the request

level is > current mask in status reg.

• exc_lev is the highest priority of any pending
exception
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Exceptions are Sensed Before Fetching Next
Instruction

 Reset starts the computer with a stack pointer from
location 0 at the address from location 4

Instruction_interpretation := (
Run ∧ ¬(Reset ∨ exc) → (IR ← Mw[PC] : PC ← PC + 2);    Normal execution state
Reset → (INT〈2..0〉 ← 7 : S ← 1 : T ← 0:           Machine reset

SSP ← Ml[0] : PC ← Ml[4] :
Reset ← 0 : Run ← 1 );

Run ∧ ¬Reset ∧exc → (SSP ← SSP - 4; Ml[SSP] ← PC;     Exception handling
SSP ← SSP - 2; Mw[SSP] ← Status;
S ← 1 : T ← 0 : INT〈2..0〉 ← exc_lev〈2..0〉 :
PC ← Ml[vect〈7..0〉#002] ); 

instruction_execution ).
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Memory Mapped I/O

 No separate I/O space. Part of cpu memory space is
devoted/reserved for I/O instead of RAM or ROM.

 Example: MC68000 has a total 24-bit address space. Suppose
the top 32K is reserved for I/O:

FFFFFFH
 . . .
FF8000H
FF7FFFH

 . . .
000000H

}
} Memory Space

I/O Space

Notice that top 32K can be addressed by a negative 16-bit value.
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Memory Mapped I/O in the MC68000

 Memory mapped I/O allows µprocessor chip to have one bus for
both memory and I/O
 Multiple wires for both address and data

 I/O uses address space that could otherwise contain memory
 Not popular with machines having limited address bits

 Sizes of I/O & memory “spaces” independent
 Many or few I/O devices may be installed

 Much or little memory may be installed

 Spaces are separated by putting I/O at top end of the address
space
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Fig. 3.8  A Memory Mapped Keyboard Interface

MC68000 has a 24 bit address bus

Address space runs from 000000H
up to FFFFFFH.

A 16 bit address constant can be
positive - and sign extend to an
address running from 000000H up
to the maximum positive value,
or negative - and sign extend to an
address running from FFFFFFH
down to the last negative 16 bit value.

I/O addresses in latter range can
be accessed by a 16 bit constant.
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The SPARC (Scalable Processor Architecture) as a
RISC Microprocessor Architecture

 The SPARC is a general register, Load/Store architecture

 It has only two addressing modes. Address =
 (Reg+Reg), or  (Reg + 31-bit constant)

 Instructions are all 32 bits in length

 SPARC has 69 basic instructions

 Separate floating point register set

 First implementation had a 4 stage pipeline

 Some important features not inherently RISC
 Register windows:separate but overlapping register sets

available to calling and called routines

 32 bit address, big-endian organization of memory
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Fig. 3.9   The SPARC Processor State
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Fig. 3.10   Register Windows: an Important
Concept in SPARC
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SPARC Memory

RTN for the SPARC memory:
Mb[0..232-1]〈7..0〉: Byte memory;
Mh[a] 〈15..0〉 := Mb[a] 〈7..0〉#Mb[a+1] 〈7..0〉:    Halfword memory;
M[a] 〈31..0〉 := Mh[a] 〈15..0〉#Mh[a+2] 〈15..0〉: Word memory.
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Register Windows Format the General
Registers

 32 general integer and address registers are accessible at any
one time
 Global registers G0..G7 are not in any window

 G0 is always zero: writes to G0 are ignored, reads return  0

 The other 24 are in a movable window from a total set of 120

 On subroutine call, the starting point changes so that 24-31
before call become 8-15 after

 Regs. 8-15 are used for incoming parameters

 Regs. 24-31 are for outgoing parameters

 Current Window Pointer CWP locates reg. 8

 Overflow of reg. space causes trap
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SAVE, RESTORE and the Current Window
Pointer

 CWP points to the register currently called G8

 SAVE moves it to point of the old G24
 This makes the old G24..G31 into the new G8..G15

 If parameters are placed in G24..G31 by the caller, the callee
can get them from G8..G15

 When all windows are used, SAVE traps to a routine that
saves registers to memory

 Windows wrap around in the available registers
 Window overflow “spills” the first window & reuses its space
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SPARC Operand Addressing

 One mode computes address as sum of 2 registers; G0 gives
zero if used

 The other mode adds sign extended 13 bit constant to a register

 These can serve several purposes
 Indexed: base in one reg., index in another

 Register indirect: G0+Gn
 Displacement: Gn+const, n≠0

 Absolute: G0+const.

 Absolute addressing can only reach the bottom or top 4K bytes
of memory
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RTN for SPARC Instruction Formats

op〈1..0〉 := IR〈31..30〉: Instruction class, op code for format 1;
disp30〈29..0〉 := IR〈29..0〉: Word displacement for call, format 1;
a := IR〈29〉: Annul bit for branches, format 2a;
cond〈3..0〉 := IR〈28..25〉: Branch condition select, format 2a;
rd〈4..0〉 := IR〈29..25〉: Destination register for formats 2b & 3;
op2〈2..0〉 := IR〈24..22〉: Op code for format 2;
disp22〈21..0〉 := IR〈21..0〉: Constant for branch displacement or sethi;
op3〈5..0〉 := IR〈24..19〉: Op code for format 3;
rs1〈4..0〉 := IR〈18..14〉: Source register 1 for format 3;
opf〈8..0〉 := IR〈13..5〉: Sub-op code for floating point, format 3a;
i := IR〈13〉: Immediate operand indicator, formats 3b & c;
simm13〈12..0〉 := IR〈12..0〉: Signed immediate operand for format 3c;
rs2〈4..0〉 := IR〈4..0〉: Source register 2 for format 3b.



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. 3.11   SPARC Instruction Formats

 Three basic formats with variations
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RTN For SPARC Addressing Modes

adr〈31..0〉 := (i=0 → r[rs1] + r[rs2]: Address for load, store,
i=1 → r[rs1] + simm13〈12..0〉 {sign ext.}): and jump;

calladr〈31..0〉 := PC〈31..0〉 + disp30〈29..0〉 #002: Call relative address;
bradr〈31..0〉 := PC〈31..0〉 + disp22〈21..0〉 #002{sign ext.}: Branch address.
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RTN For SPARC Instruction Interpretation

instruction_interpretation := (IR ← M[PC]; instruction_execution;
update_PC_and_nPC; instruction_interpretation):
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Tbl. 3.8   SPARC Data Movement Instructions

Inst. Op. OPCODE Meaning
ldsb 11 00 1001 Load signed byte
ldsh 11 00 1010 Load signed halfword
ldsw 11 00 1000 Load signed word
ldub 11 00 0001 Load unsigned byte
lduh 11 00 0010 Load unsigned halfword
ldd 11 00 0011 Load doubleword
stb 11 00 0101 Store byte
sth 11 00 0110 Store halfword
stw 11 00 0100 Store word
std 11 00 0111 Store double word
swap 11 00 1111 Swap register with memory
ar 10 00 0010 Rdst ← Rsrc1 OR Rsrc2 (or immediate)
sethi 00 Op2=100 High order 22 bits of Rdst ← disp22
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Register and Immediate Moves in the SPARC

 OR is used with a G0 operand to do register to register moves

 To load a register with a 32 bit constant, a 2 instruction
sequence is used
SETHI  #upper22, R17

OR  R17, #lower10, R17

 Double words are loaded into an even register and the next
higher odd one

 Floating point instructions are not covered, but the 32 FP
registers can hold single length numbers, or 16 64-bit FP, or 8
128-bit FP numbers
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Tbl. 3.9   Typical SPARC Arithmetic Instructions

 All are format 3, Op=10

 CCs are set if X=1 and not if X=0

 Both register and immediate forms are available

 Multiply is done by software using MULSCC or using floating
point instructions
 Multiply is hard to do in one clock but multiply step is not

Inst. OPCODE Meaning
add 0X 0000 Add or add and set condition codes
addc 0X 1000 Add with carry: set CCs or not
sub 0X 0100 Subtract: set CCs or not
subc 0X 1100 Subtract with borrow: set CCs or not
mulscc 10 1100 Do one step of multiply
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Tbl. 3.10   SPARC Logical and Shift Instructions

 All instructions use format 3 with op=10
 Both register and immediate forms are available

 Condition codes set if S=1 & undisturbed if S=0

Inst. OPCODE Meaning
AND 0S 0001 AND, set CCs if S=1 or not if S=0
ANDN 0S 0101 NAND, set CCs or not
OR 0S 0010 OR, set CCs or not
ORN 0S 0110 NOR, set CCs or not
XOR 0S 0011 XNOR(Equiv), set CCs or not
SLL 10 0101 Shift left logical, count in RSRC2 or imm13
SRL 10 0110 Shift right logical, count in RSRC2 or imm13
SRA 10 0111 Shift right arithmetic, count as above
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Tbl. 3.11  SPARC  Branch and Control
Instructions

Inst.       Fmt. Op OPCODE Meaning
      or Op2   
ba       2 00 010 Unconditional branch
bcc       2 00 010 Conditional branch
call       1 01 Call & save PC in R15
jmpl       3 11 1000 Jmp to EA, save PC in Rdst
save       3 11 1100 New register window, & ADD
restore        3 11 1101 Restore reg. window, & ADD

Some condition fields:
Inst. COND Inst. COND Inst. COND Inst. COND
ba 1000 bne 1001 be 0001 ble 0010
bcc 1101 bcs 0101 bneg 0110 bvc 1111
bvs 0111
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Fig. 3.12  Example SPARC Code: add two integers

.begin

.org

progl: ldw [x], %r1 ! load a word from M[x] into register %r1

ldw [y], %r2 ! load a word from M[y] into register %r2

addcc %r1, %r2, %r3 !%r3 ← %r1 + %r2  ; set CCs

st %r3, [z] ! store sum into M[z]

jmpl %r15, +8, %r0! return to caller

nop ! branch delay slot

x: 15 ! reserve storage for x, y, and z

y: 9

z: 0

Note different syntax for SPARC. 
Note r15 contains return address—placed there by the OS in this case.
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Fig. 3.13  Example of Subroutine Linkage in the
SPARC

.begin

.org
prog: ld [x], %o0 !Pass parameters in

ld [y], %o1 !   first 3 output registers.
call add3 !Call subroutine to put result in %o0.
mov -17, %o2 !Set last parameter in delay slot
st %o0, [z] !Store returned result.
...

x: 15
y: 9
z: 0
add3: save %sp,-(16*4),%sp !Get new window and adjust stack pointer.

add %i0, %i1, %l0 !Add parameters that now appear in
add %l0, %i3, %l0 !   input registers using a local.
ret !Return. Short for jmp %i7+8.
restore %l0, 0, %o0 !Result moved to caller’s %o0.
.end
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Pipelining of the SPARC Architecture

 Many aspects of the SPARC design are in support of a pipelined
implementation
 Simple addressing modes, simple instructions, delayed branches,

load/store architecture

 Simplest form of pipelining is fetch/execute overlap—fetching next inst.
while executing current inst.

 Pipelining breaks inst. processing into steps
 A step of one instruction overlaps different steps for others

 A new inst. is started (issued) before previously issued instructions are
complete

 Instructions guaranteed to complete in order
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Fig. 3.14  The SPARC MB86900 Pipeline

 4 pipeline stages are Fetch, Decode, Execute, and Write

 Results are written to registers in Write stage

Fetch Dec. Exec. WriteInstr. 1

Fetch Dec. Exec. Write

Fetch Dec. Exec. Write

Fetch Dec. Exec. Write

Instr. 2

Instr. 3

Instr. 4

1 2 3 4 5 6 7

Clock Cycle
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Pipeline Hazards

 Will be discussed later, but main issue is:

 Branch or jump change the PC as late as Exec. or Write, but
next inst. has already been fetched
 One solution is ‘Delayed Branch’

 One (maybe 2) instruction following branch is always executed,
regardless of whether branch is taken

 SPARC has a delayed branch with one ‘delay slot”, but also
allows the delay slot instruction to be annulled (have no effect on
the machine state) if the branch is not taken

 Registers to be written by one instruction may be needed by
another already in the pipeline, before the update has
happened (Data Hazard)
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CISC vs. RISC: Recap

 CISCs supply powerful instructions tailored to commonly used
operations, stack operations, subroutine linkage, etc.

 RISCs require more instructions to do the same job

 CISC instructions take varying lengths of time

 RISC instructions can all be executed in the same, few cycle,
pipeline

 RISCs should be able to finish (nearly) one instruction per clock
cycle
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Key Concepts: RISC vs. CISC

 While a RISC machine may possibly have fewer instructions
than a CISC, the instructions are always simpler. Multi-step
arithmetic operations are confined to special units.

 Like all RISCs, the SPARC is a load/store machine. Arithmetic
operates only on values in registers.

 A few, regular, instruction formats and limited addressing
modes make instruction decode and operand determination
fast.

 Branch delays are quite typical of RISC machines and arise
from the way a pipeline processes branch instructions.

 The SPARC does not have a load delay, which some RISCs
do, and does have register windows, which many RISCs do
not.



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Chapter Summary

 Machine price/performance are the driving forces.
 Performance can be measured in many ways: MIPS, execution

time, Whetstone, Dhrystone, SPEC benchmarks.

 CISC machines have fewer instructions that do more.
 Instruction word length may vary widely

 Addressing modes encourage memory traffic

 CISC instructions are hard to map onto modern architectures

 RISC machines usually have
 One word per instruction

 Load/store memory access

 Simple instructions and addressing modes

 Result in allowing higher clock cycles, prefetching, etc.


