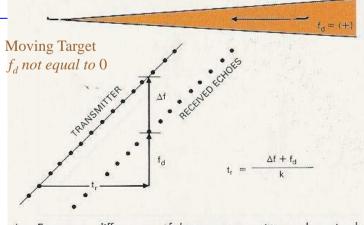


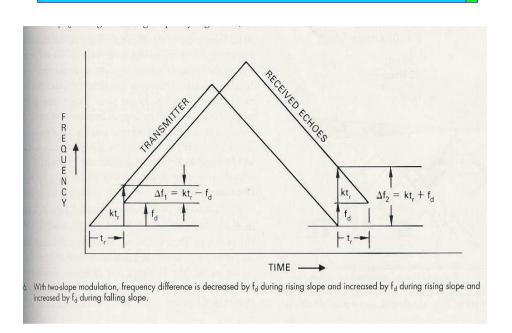
Overview of radars

S. Cruz-Pol INEL 6069

FM Radar: Stationary target case


cy of the transmitter at the time an echo is received (Δf) is

proportional to transit time (t_r).


Types of Doppler Radar

- □ Continuous Wave (CW)
 - Simple
 - No range information
- □ Frequency Modulated CW, (FMCW)
 - Fine range resolution
 - Artifacts from target motion
- □ Pulse Doppler
 - Range and Doppler
 - No artifacts (except when pulse compression used)

FM Radar: Moving target case

4. Frequency difference, Δf , between transmitter and received echoes is reduced by target's doppler frequency, f_d . To find transit time, f_d must be added to Δf .

Pulse Doppler Radar $f_d = -\frac{v_r}{\lambda}$ Tx $T_S = 1/PRF$ Rx "Main Bang" Tx leakage Stationary Point target Echo Thermal

Noise

Range Ambiguities

—Range Resolution

$$\Delta R = \frac{c\,\tau}{2}$$

Unambiguous Range

$$R_{\text{max}} = \frac{c}{2PRF} = \frac{cT_S}{2}$$

Doppler Ambiguities

Nyquist frequency

$$f_{d,\text{max}} = \frac{PRF}{2} = \frac{1}{2T_s}$$

Nyquist Interval

(maximum radial velocity that can be measured)

$$v_{\text{max}} = \frac{f_d \lambda}{2} = \frac{PRF\lambda}{4}$$