

Example 9.3 Circuit with 10^{-3} m² cross-section, radius =10cm, $i_1(t)=3 \sin \omega t$ [A], 50 Hz, $N_r=200$ turns, $N_r=100$, $\mu=500\mu_{0}$, find V_{emt} on both coils $\omega = 2\pi f$ > Find reluctance and use Faraday's Law $V_{emf} = -N_2 \frac{d\Psi}{dt}$ $\Psi = \mathcal{F} / \mathcal{R} = N_1 I_1 \frac{\mu S}{l}$ $V_{emf} = -100(200)(3\omega \cos \omega t) \frac{500\mu_0 I0^{-3}}{2\pi (0.10)} = -6\pi \cos 100\pi t$

Cruz-Pol. Electro

Dr. S. Cruz-Pol, INEL 4152-Electromagnetics

Maxwell Equations in General Form			
Differential form	Integral Form		
$\nabla \cdot D = \rho_v$	$\oint_{S} D \cdot dS = \int_{V} \rho_{v} dv$	<u>Gauss's</u> Law for <i>E</i> field.	
$\nabla \cdot B = 0$	$\oint_{S} B \cdot dS = 0$	Gauss's Law for H field. Nonexistence of monopole	
$\nabla \times E = -\frac{\partial B}{\partial t}$	$\oint_{L} E \cdot dl = -\frac{\partial}{\partial t} \int_{s} B \cdot dS$	<u>Faraday's</u> Law	
$\nabla \times H = J + \frac{\partial D}{\partial t}$	$\oint_{L} H \cdot dl = \int_{S} \left(J + \frac{\partial D}{\partial t} \right) \cdot dS$	<u>Ampere's</u> Circuit Law	
Cruz-Pol, Electromagnetics UPRM			

Dr. S. Cruz-Pol, INEL 4152-Electromagnetics

Maxwell Equations for Harmonic fields		
Differential form*		
$\nabla \cdot \varepsilon E = \rho_{\nu}$	Gauss's Law for E field.	
$\nabla \cdot \mu H = 0$	<u>Gauss's</u> Law for H field. No monopole	
$\nabla \times E = -j\omega\mu H$	Faraday's Law	
$\nabla \times H = J + j\omega\varepsilon E$	Ampere's Circuit Law	
substituting $D = \varepsilon E$ and $H = \mu$	<i>B</i>)	

