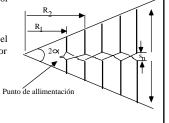
Log Periodic Antennas

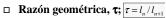
INEL 5305 Dr. S. X-Pol

anal	ndas d	cia (MHz)	Bane	da I F	recuencia	<u></u>
	- rections	(111112)	2411		GHz)	
2	54-60	VHF	L	1	-2	
3	60-66		S	2	-4	
4	66-72		С	2	-6	
5	76-82		X	8	-12	
6	82-88		Ku	ı 1.	2-18	
7	174-180		K	13	8-27	
8	180-186		Ka	1 2	7-40	
9	186-192		w	9	0-100	
10	192-198		mn	n 4	0-300	
11	198-204			_		
12	204-210		Digital vs. Analog TV			
13	210-216		Both use VHF and UHF broadcast frequencies,			
14	470-476	UHF	although some stations may wind up switching			
15	476-482		frequencies after the full implementation of DTV.			
83	884-890		Once the transition to digital TV is complete, TV			

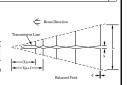
Antena Log-Periódica


(LP or LPDA antenna)

- □ Aplicaciones: TV en banda VHF y para radio en FM (87.5 to 108.0
- □ Consiste en un arreglo de dipolos cuyos tamaños aumentan periódicamente en su logaritmo.
- □ No tiene ningún elemento parasítico.
- Es de banda ancha y polarizada linealmente en el eje de la antena.
- □ Provee directividades de entre 7 a 12



Definiciones:


- \Box l_1 = largo del dipolo menor
- \Box d_1 = diámetro del dipolo menor
- s_I = espaciamiento entre el "air gap" del dipolo menor
- R_1 = distancia al origen desde el dipolo menor
- \Box α = ángulo de origen

Parámetros de LPDA

Si se saca el logaritmo en ambos la

$$\log l_n - \log l_{n+1} = \log \tau$$

Igualmente: $\tau = l_{n}/l_{n+1} = s_{n}/s_{n+1} = d_{n}/d_{n+1} = R_{n}/R_{n+1}$

 \Box Factor de espaciamiento, σ .

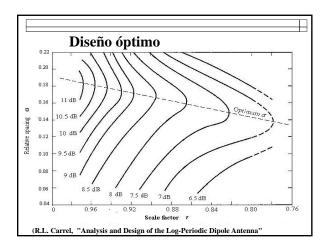
 $\sigma = (R_{n+1} - R_n)/2l_{n+1}$

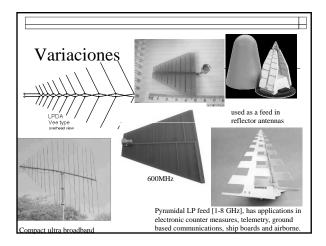
Ángulo de origen, α

 $\alpha = tan^{-1}((1-\tau)/4\sigma)$

Nota: Usualmente se usan todos los diámetros y los espaciamientos ("gaps") del mismo tamaño y no afecta mucho la operación de la antena.

Valores Típicos:


 $10^{\rm o} < \alpha < 45^{\rm o}$ $0.70 < \tau < 0.95$ Si α es alta, τ baja y vise-versa


Conexión

- □ La antena Log-periódica se conecta en cruzado ("crisscross") para que el patrón apunte hacia los elementos cortos. Las frecuencias de corte (extremos del ancho de banda de operación) se determinan por los largos eléctricos del elemento más largo y el más corto, de forma que,
- $\Box f_L = c/\lambda_L$
- $l_n \otimes \lambda_L/2$
- $\Box \ f_H = c/\,\lambda_H$
- $l_1 \otimes \lambda_H / 2$
- \square Impedancias de entrada de ~ 50 90 Ω .

Región Activa

□ Es alrededor de los elementos cuyos largos sean ~\(\lambda/\lambda/\), según sea la frecuencia de operación que se esté recibiendo o transmitiendo

Ejemplo: Diseñe antena LPDA para VHF (54-476 MHz) con 7dB de ganancia

- \Box El tamaño del elemento mayor (l_n) se determina con la frecuencia de operación más baja. $l_n=\lambda_L/2$ $f_L=c/\lambda_L$
- $\ \square$ Halle la razón geométrica, τ y el factor de espaciamiento σ óptimos de la tabla de diseño.
- Determine ángulo de origen, $\alpha = tan^{-1}((1 \tau)/4 \sigma)$
- □ Calcule los largos y espaciamientos de los otros elementos hasta llegar a l_1 . $\tau = l_n/l_{n+1} = s_n/s_{n+1} = d_n/d_{n+1} = R_n/R_{n+1}$
- $\Box \quad \sigma = (R_{n+1} R_n)/2l_{n+1}$
- □ Solución: N=11 ó más