Power Alternatives for the Off-The-Grid Radar

Dr. Lionel R. Orama-Exclusa, PE

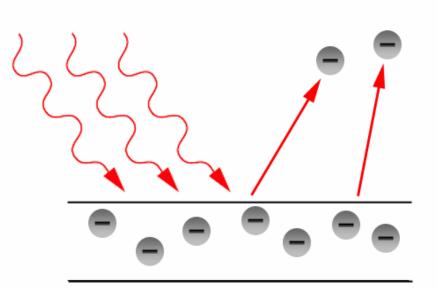
Nov/15/2006

Outline

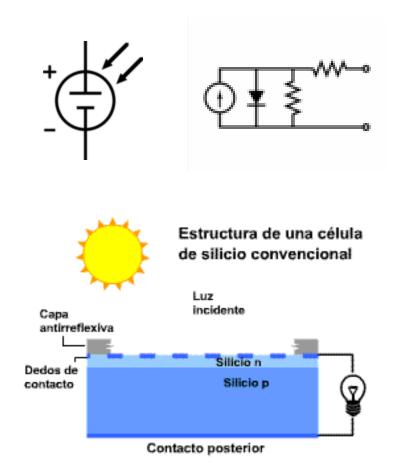
- Introduction
- Photovoltaic Technology (PV)
- PV-Considerations
- Other Available Technologies-WIND
- WIND-Considerations
- General PV Design
- Homework

Introduction

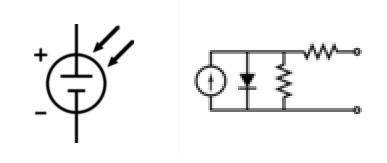
- Off-The Grid radar (OTG) important part of DCAS
- Will be deploy by end user needs
- Power generated on site
- Should generate using renewable sources
- Renewable sources are:
 - Clean
 - Natural
 - Reliable
 - Theoretically endless
 - Exists everywhere, especially in remote places
- The later is why the OTG needs to be powered by a renewable energy alternative.

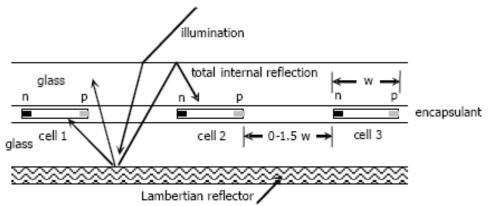

- Based on photoelectric effect
 - Einstein's Noble
 Prize

$$hf = hf_0 + \frac{1}{2}mv_m^2$$

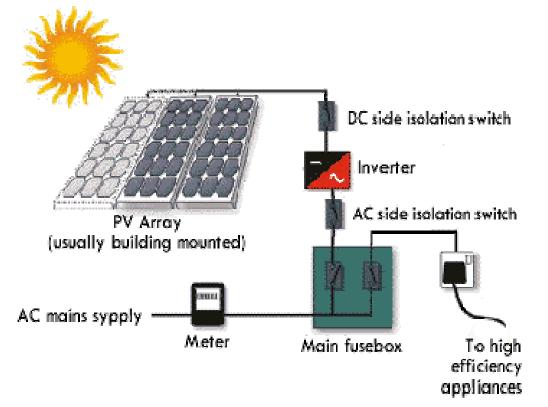

-1

$$hf = \phi + E_k$$

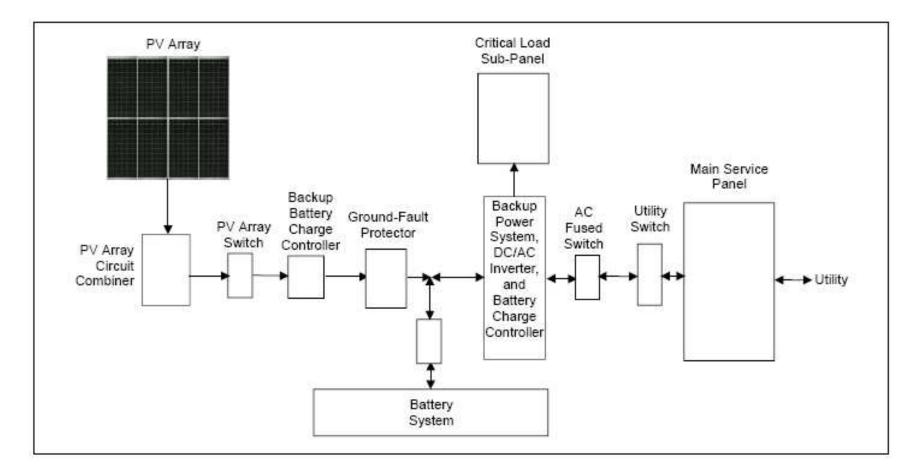

- Light photons
 - Energy proportional to its wavelength



- PV Cell, basic building block
 - Semiconductors
 - PN junction photodiode
 - By photoelectric effect generates current



- PV Module
 - Hundreds of cells
 - Increase power output
- 1st Generation
 - Single silicon based pnjunction
- 2nd Generation
 - Multiple silicon based pnjunctions
 - Each junction absorbs a wavelength
- 3rd Generation
 - Different structure, enhance absorption



Nov/15/2006

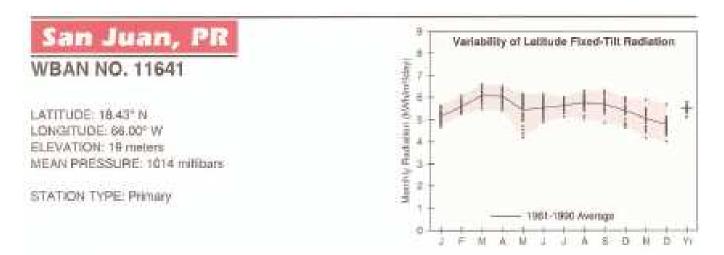
Nov/15/2006

• Power vs. Energy

In a DC System:

$$P(t) = I(t) \cdot V(t)$$

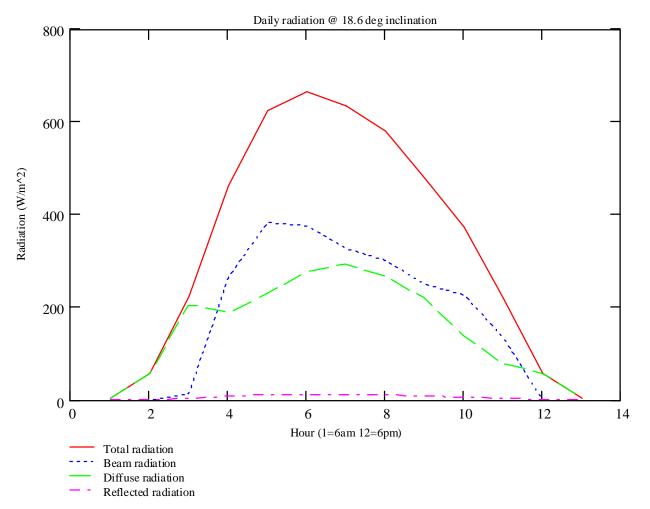
$$P = \frac{dE}{dt} = \frac{dW}{dt}$$


$$P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \lim_{\Delta t \to 0} P_{avg}$$

$$P = \frac{W}{t} = \frac{E}{t}$$

D(1)

T(1) T7(1)

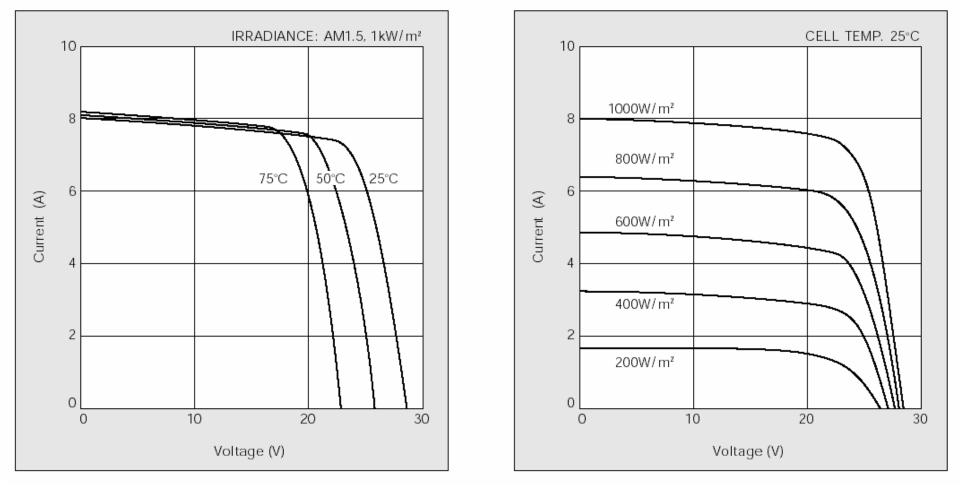

• Radiation is an issue

THU(*)			Feb	Mar	Apr	May	Jame	Juby	Aug	Sept.	Ovt	Nor	Dec	You
a	Average Min/Max	43 1046	4.9 4.3/5.3	5.7 5.2%1	0.1	3.8	0.1 3.7/6.8	6.1 (4.5(6.3))	6.0 .3.2/6.5	55 43(61	4.9 4.3(9.4	43 11.774.0	4.0 3.49425	3.3 4/03/5
Latitude -15	Average Min/Man	4.1/4.8	4.8/5.5	5.8 5.3%3	41 5.5%6	3.7 4.46.5	6.0 5.2/6/7	0.0 5.5%6.4	6.0 5.2/6.5	3.6 4.862	5.0 4.45.5	43	4.1 3:5,4 8	5.4 5.05.6
Latitude	Average Min/Max	3.1 17/3.6	5.0 5.1/6 i	6.1 3500	0.1 5.405	5.4 4.7/0.7	3.3 4.9/0.7	5.6 1.1m0	5.1	3.7 4863	3.4 4.7m.9	2.3 #.215,9	4.001.7	9.5 9.155.8
Lamole +15	Average May/May	5.5 3.0/6.1	5.40.3	. 6.0 5.4%3	A.7 3.100.7	4.0- 3.8/5.5	4.8 43(5,3	4.55.1	33	$\frac{5.6}{4.7(6.1)}$	-5.3 4.7(6)	.54 4,7(6,3	4.2 4.3/6.7	\$.4 5.0857
90	Average Min/Max	42	3.9 5.6.4.2	3.1 28/11	20	13	1.5	1.41.4	1.7	23	2847	1.9 1.04.7	44.	$\frac{18}{2300}$

Solar Radiation for Flat-Plate Collectors Facing South at a Fixed Tilt (kWh/m//dav), Uncertainty 19%

Nov/15/2006

Mayagüez Area Daily radiation @ 18.6 degrees for January


Nov/15/2006

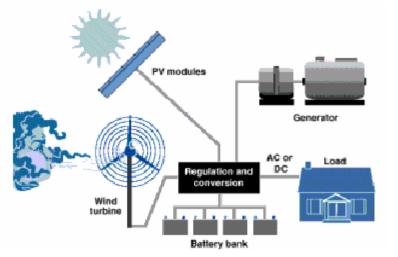
Why is the radiation important? Kyocera Model KC170GT

Current-Voltage characteristics of Photovoltaic Module

KC170GT at various irradiance levels

Current-Voltage characteristics of Photovoltaic Module KC170GT at various cell temperatures

Nov/15/2006


			Hourly	Horizontal	Radiation (VV/m²) for ti	he city of M	layagüez P.R.	
Month/Hour	6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	Monthly Average (Kwh/m²)	Yearly Avarege(Kwh/m²)
Jan	5.1	59.0	22.1	412.3		594.6	572.6	3.47	4.09
Feb	8.8	75.1	269.1	471.3	602.5	626.5	567.2	3.96	
Mar	16.4	117.0	348.3	552.4	669.1	658.1	628.1	4.39	
Apr	26.8	183.0	404.4	586.8	684.2	683.9	652.1	4.61	
May	48.0	215.5	400.3	549.9	613.3	608.2	584.6	4.26	
Jun	51.1	216.1	407.4	589.0	679.2	634.7	574.8	4.50	
Jul	38.8	204.7	397.8	581.4	672.6	640.7	547.6	4.19	
Aug	29.0	192.8	403.8	593.9	711.7	692.4	589.6	4.40	
Sep	24.3	155.5	383.6	566.3	684.6	678.9	631.2	4.27	
Oct	15.1	132.5	356.2	540.4	645.4	655.5	579.8		
Nov	9.5	101.6	304.4	477.3	605.7	637.9	575.4	3.77	
Dec	2.5	66.6	242.0	405.4	542.3		531.9	3.37	
Month/Hour	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM			
Jan	524.6	431.6	328.7	192.1	58.0	4.4			
Feb	559.0	467.8	346.4	209.2	80.2	8.8			
Mar	615.8	482.0	352.1	212.3	90.5	13.6			
Apr	600.6	479.2	338.5	224.3	111.7	20.8			
May	510.4	425.6	316.4	210.1	106.3				
Jun	556.2	450.2	324.6		126.2	36.3			
Jul	450.8	372.6	269.4	201.0	122.4	36.6			
Aug	489.6	416.7	293.4	206.9	117.4	31.6			
Sep	526.2	407.3	287.7	174.1	89.6				
Oct	507.6	361.2	253.3	136.0	48.3	3.2			
Nov	504.4	411.4	278.6	142.6	29.0	2.5			
Dec	472.6	368.8	268.5	141.3	33.1	1.9			

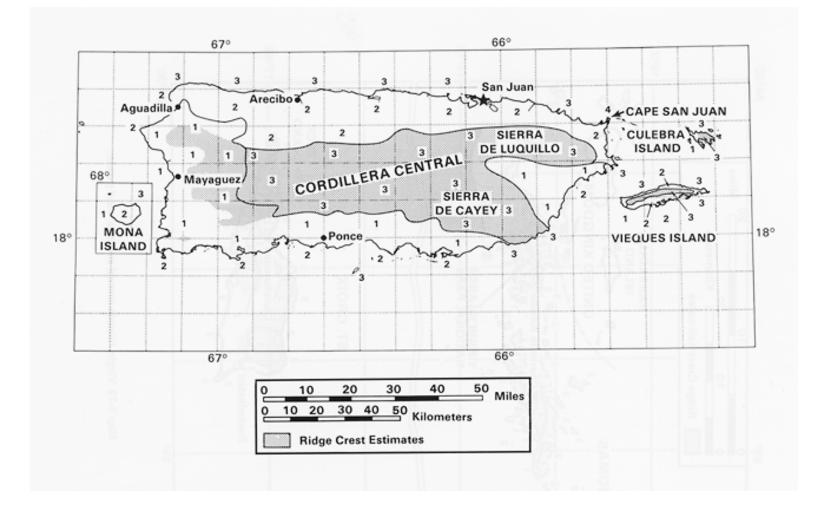
Compare with 5.5 (yearly average) & 4.8 (monthly average) at LMM Inter. Airport

Nov/15/2006

Other Available Technologies-WIND

The power *P* available in the wind is given by: $P = \frac{1}{2}\rho\pi R^2 v^3$

where *P* is in <u>watts</u>, ρ (<u>density of air</u>) is measured in kg/m³, *R* (rotor radius) is in m, and *v* (wind speed) is in m/s.


Nov/15/2006

WIND-Considerations

Wind Classes for US-DOE Wind Maps Classes of wind power density at 10 m and 50 m (a)

Wind	10 m (33	B ft)	50 m (164 ft)				
Power Class*	Wind Power Density (W/m ²)	Speed ^(b) m/s (mph)	Wind Power Density (W/m ²)	Speed ^(b) m/s (mph)			
1	0	0	0	0			
2	100	4.4 (9.8)	200	5.6 (12.5)			
3	150	5.1 (11.5)	300	6.4 (14.3)			
4	200	5.6 (12.5)	400	7.0 (15.7)			
5	250	6.0 (13.4)	500	7.5 (16.8)			
6	300	6.4 (14.3)	600	8.0 (17.9)			
7	400	7.0 (15.7)	800	8.8 (19.7)			
	1000	9.4 (21.1)	2000	11.9 (26.6)			

WIND-Considerations

Nov/15/2006

Bergey 1000W Specifications:

- Rotor Diameter: 2.5 m (8.2 ft.)
- Start-up Wind Speed: 3m/s (6.7 mph)
- Rated Wind Speed: 11m/s (24.6 mph)
- Rated Power: 1000 Watts
- Net Weight: 75lbs

Predicted Energy Production

Wind Speeds Taken at Top of Tower

Annual Average Wind	3.5	4	4.5	5	5.5	6	6.5	
Annual Average Wind	7.8	8.9	10.1	11.2	12.3	13.4	14.5	
Production	Production Daily		2.8	3.9	5.1	6.4	7.7	8.9
in Monthly		55	85	115	155	195	235	270
kWh (24 VDC) Annually		680	1,010	1,410	1,850	2,320	2,790	3,260

Wind Speeds Taken at 10 meters (per standard wind resource maps)

Ľ	IS-DOE Wind	Power Class	1	2	3	4	5	6	7
Annual Av	rerage Wind :	Speed (mph)	~ 8.9	~ 10.7	~ 12.1	~ 13.0	~ 13.9	~ 15.0	~ 18.8
Annual A	werage Wind	Speed (m/s)	~ 4.0	~ 4.8	~ 5.4	~ 5.8	~ 6.2	~ 6.7	~ 8.4
	30 ft (9m)	Daily	2.6	4.3	5.8	6.8	7.8	9.1	12.7
Production	Tower	Monthly	80	130	175	205	240	275	385
in kWh	64 ft (20m)	Daily	4.1	6.4	8.2	9.3	10.4	11.7	14.7
(24 VDC)	Tower	Monthly	125	195	250	285	320	355	445
	104 ft (32m)	Daily	5.2	7.8	9.7	10.9	12.0	13.1	15.4
	Tower	Monthly	160	235	295	330	365	400	465
				<u></u>		00 01010	40000		

Assumptions: Inland site, Rayliegh Wind Distrubution, Shear Exponent = 0.20, Altitude = 1000ft (300m). Note: Battery charge regulation (batteries full) and wire run losses will reduce actual XL.1 performance. **Your Performance May Vary.**

Nov/15/2006

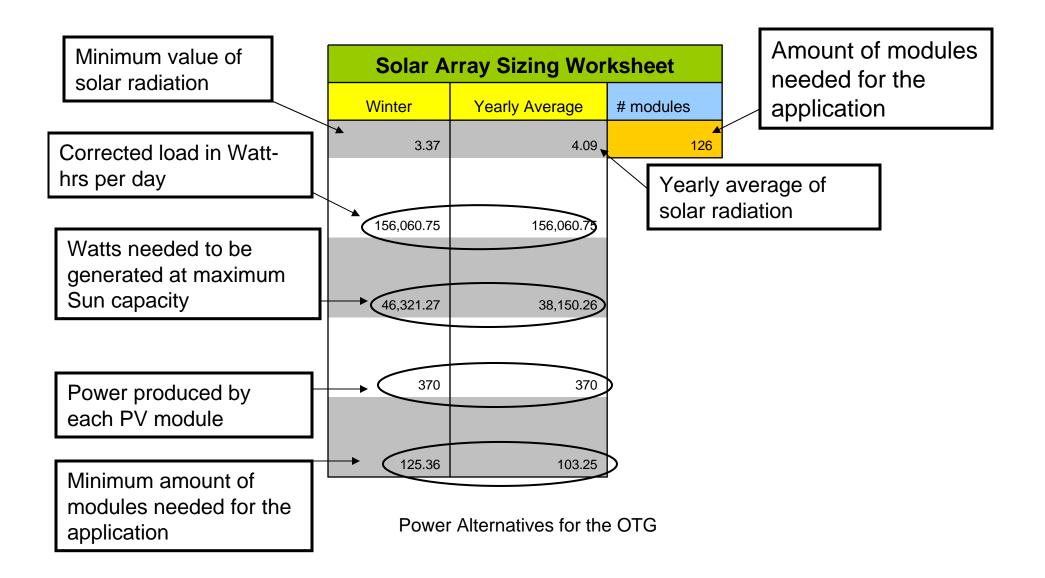
General PV Design

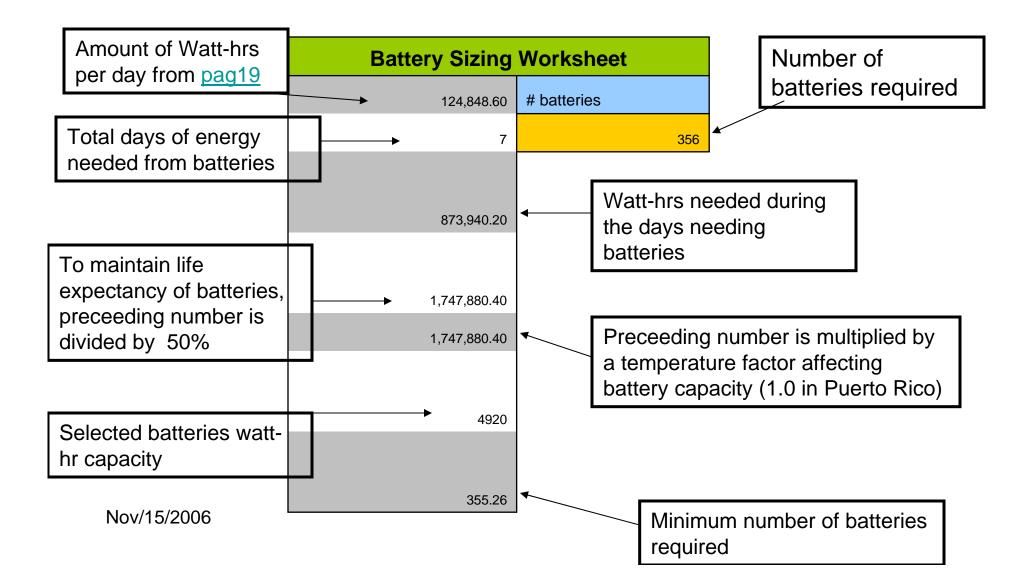
• Energy Audit of the Load-Daily kWh of use

- Power rating of each electrical load
- Total time of use for each load
- Solar Array Sizing
 - How many PV modules are needed
- Battery Sizing
 - How many batteries are needed
- Inverter Specification (if needed)
 - For AC loads

Energy Audit-Room BNF8

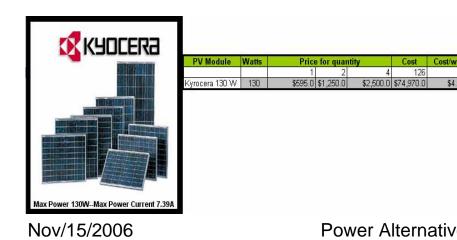
BNF 8												
Equipo	Voltaje (V)	Amperes (A)	Potencia (VA)	Tiempo Enscendido (hr./dias)	Rango	Potencia BNF8 (KVA)						
Precision Low Temperature Incubator (nevera)	115	5	575	24	5	6.86						
Controlador de temperatura de nevera	115	8	920	24	5							
Nevera Whirpool	115	6.5	747.5	24	5							
Nevera General Electric	115	7	805	24	5							
Nevera Westing House	115	4.75	546.25	24	5							
Edge Card Hood Blower/luces	115/115	9.4/2.9	1415									
Heat Lab-Line	120	1.25	150									
Precision Thelco Model 6	120	2.7	324									
Bacti-cinerator	120	1.1	132									
Fisher Scientific	115	0.7	80.5									
2 Computadoras			610									
1 Printer			14									
4 sets de luces fluorescente de 4 tubos			544									
						Potencia						

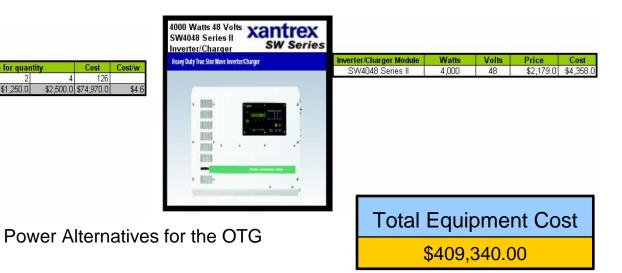

Potencia Total (KVA)


Energy Audit-Total for building's critical loads

Load Evaluation Form														
Appliance	AC	DC	Qty	VA	Watts (VA) Mult. by 1.15 for AC	Hrs.	Hrs. Per Day	Days	Days Per Week	/	Avg. Watt Hrs./Day	Total watt-hr per day	Load correction factor	Corrected watt-hr per day
Refrigerator	x		10	300	3,450	24	82,800	7	579,600	7	82,800	124,849	1.25	156,061
Lights Column	x		1	647	744	12	8,929	7	62,500	7	8,929	<u>pag21</u>		
Freezers	x		4	300	1,380	24	33,120	7	231,840	7	33,120			

Solar Array Sizing


Battery Bank Sizing



Main Equipment Cost

These are some examples of devices specified for the application on the example.

Homework

- Using the example tables above specify the amount of PV modules and batteries needed to power the whole CLiMMATE Lab.
- How much it would cost to power the Lab?