Problem Solutions to assigned problems from Balanis

5.3) Find the radiation efficiency of a single-turn and a 4-turn circular loop each of radius $\lambda/10\pi$, and operating at 10MHz. The radius of the wire is $10^{-3}\lambda$ and the turns are spaced $3 \times 10^{-3} \lambda$. Assume the wire is copper with a conductivity of 5.7×10^{7} S/m, and the antenna is radiating into free-space.

Solution: $e_{cd}(N=1) = 92\%$ $e_{cd}(N=4) = 97\%$

5.4) Find the power radiated by a small loop by forming the average power density, using (5.27a) - (5.27c), and integrating over a sphere of radius r. Compare the answer with (5.23b).

Solution: should be equal

5.12) A constant current circular loop of radius $a = 5\lambda/4$ is placed on the x-y plane. Find the <u>two</u> smallest angles (excluding $\theta = 0$) where a null is formed in the far-field. Solution: $\theta_{nulls} = 29.3^{\circ}$ and 63.2°

5.13) Design a circular loop of constant current such that its field intensity vanishes only at $\theta = 0$ ($\theta = 180^{\circ}$) and $\theta = 90^{\circ}$. Find its radius, radiation resistance, and directivity.

Solution: C= 3.84 $\lambda, \,$ a= 0.61115 $\lambda, \,$ R_{rad} = 2.27 k ohms D = 2.619

- 5.24) A circular loop of non-constant current distribution, with circumference of 1.4λ , is attached to a 300-ohm line. Assuming the radius of the wire is $1.555 \times 10^{-2} \lambda$, find the
 - a) Input impedance of the loop
 - b) VSWR of the system
 - c) Inductance or capacitance that must be placed across the feed points so that the loop becomes resonant at $\theta = 0$

(Hint: see example of section 5.2.7)

Solution:

$$\label{eq:za} \begin{split} Z_a &= 300 \text{ -j55 ohms} \\ VSWR &= 1.2 \\ L &= 2.7 \ \mu H \end{split}$$