## Solutions to assigned Antenna problems from Balanis

6.1) Three isotropic sources, with spacing $d$ between them, are placed along the $z$-axis. The excitation coefficient of each outside element is unity while that of the center element is 2 . for a spacing of $d=\lambda / 4$ between the elements, find the
a) array factor
b) angles (in degrees) where the nulls of the pattern occur (between 0 and 180 degrees)
c) angles where the maxima of the pattern occur.

Solutions:
6.1a)
$E_{\text {tot }}=E_{1}+E_{2}+E_{3}=2 E_{o} \frac{e^{-j k r}}{r}+E_{o} \frac{e^{-j k r_{1}}}{r_{1}} E_{o} \frac{e^{-j k r_{2}}}{r_{2}}$
$r_{1} \approx r-d \cos \theta$
$r_{2} \approx r+d \cos \theta$
$A F(\theta)=\frac{1}{2}[1+\cos (k d \cos \theta)]=\cos ^{2}\left(\frac{k d}{2} \cos \theta\right)$
$\left[\right.$ using $\left.\quad 2 \cos ^{2}(A)=1+\cos (2 A)\right]$
6.1b) the nulls are at $\mathrm{AF}=0$ or $\cos ^{-1}(2 \mathrm{n}), \mathrm{n}=1,-1,+3,-3, \ldots$, Therefore no nulls exist.
6.1c) $\mathrm{AF}=1$ or $\theta_{\mathrm{m}}=90^{\circ}$
6.3) a 3-element array of isotropic sources has the phase and magnitude relationships shown.

The spacing between the elements is $d=\lambda / 2$.
a) Find the array factor

$$
\text { a) } A F=2 \sin (\pi \cos \theta)+1=\frac{\sin \frac{3}{2}[\pi \cos \theta-\pi / 2]}{\sin \frac{1}{2}[\pi \cos \theta-\pi / 2]}
$$

b) all the nulls $b$ ) $A F=0$ at :

$$
\theta_{\text {null }}=99.6^{\circ}, 146.44^{\circ}
$$

6.10) Design an ordinary end-fire uniform linear array with only one maximum so that its directivity is 20 dB (above isotropic). The spacing between the elements is $d=\lambda / 4$, and its length is much greater than the spacing. Determine the:
(a) number of elements
b) Overall length of the array (in wavelengths)
c) Approximate half-power beamwidth (deg)
amplitude level (compared to the maximum of the major lobe) of the first minor lobe (in dB)
Solution: a) $\mathrm{N}=100$, b) $L=24.75 \lambda$, c) $\theta=21.6$, d) $S S L=-13.5 \mathrm{~dB}$, e) 90 degrees
6.14) Find the beamwidth and directivity of a 10 -element uniform scanning array of isotropic sources laced along the z-axis. The spacing between the elements is $\lambda / 4$ and the maximum is directed at $45^{\circ}$ from its axis.
a) 30.2 degrees,
b) $\mathrm{D}=5.321$
6.30) Design a broadside binomial array of six elements placed along the z-axis separated by a distance $d=\lambda / 2$
a) Find the amplitude excitation coefficients
b) What is the progressive phase excitation between the elements?
c) Write the array factor.
d) Now assume that the elements are $\lambda / 4$ dipoles oriented in the $z$-direction. Write the expression for the electric field vector in the far field.

## Solution:

$\mathrm{a}_{1}=10, \mathrm{a}_{2}=5, \mathrm{a}_{3}=1, \alpha=0$

$$
\begin{aligned}
& A F=2 \sum_{n=1}^{3} a_{n} \cos \left[(2 n-1) \frac{\pi d}{\lambda} \cos \theta\right] \\
& E=\hat{\theta} j \eta \frac{I_{o} e^{-j k r}}{2 \pi r}\left[\frac{\cos \left(\frac{\pi}{4} \cos \theta\right)-\cos \left(\frac{\pi}{4}\right)}{\sin \theta}\right]\left\{10 \cos \left(\frac{\pi}{2} \cos \theta\right)+5 \cos \left(\frac{3 \pi}{2} \cos \theta\right)+\cos \left(\frac{5 \pi}{2} \cos \theta\right)\right\}
\end{aligned}
$$

6.40) Design a 5-element, -40dB SSL Dolph-Tschebyscheff array of isotropic elements. The elements are placed along the $x$-axis with a spacing of $d=\lambda / 4$ between them.
Find the
a) normalized amplitude coefficients
b) array factor
c) directivity
d) half-power beamwidth

Solution: $a_{3}=16.429, a_{2}=49.503, a_{1}=34.074$
$A F=2.074+3.013 \cos \left(\frac{\pi}{2} \cos \phi\right)+\cos (\pi \cos \phi), D_{o}=1.889=2.76 \mathrm{~dB}, \quad$ HPBW $=54.9^{\circ}$
6.46) In high-performance radar arrays low-sidelobes are very desirable. In a particular application it is desired to design a broadside linear array which maintains all the sidelobes at the same level of -30 dB . The number of elements must be 3 and the spacing between them must be $\lambda / 4$.
a) state the design that will meet the specifications
b) what are the amplitude excitations of the elements?
c) What is the half-power beamwidth (in deg) of the main lobe?
d) What is the directivity (in dB ) of the array?

Solution: Tschebyscheff with $a_{2}=8.157, a_{1}=15.314 \quad f=1.144$
HPBW $=72.4$, HPBW $_{\text {Tsc }}=82.8256, D_{o}=1.312=1.1793 \mathrm{~dB}$
6.50 Design a $10 \times 8$ (10 in the x direction and 8 in the y) element uniform planar array so that the main maximum is oriented along $\theta_{o}=10_{o}, \phi_{o}=90^{\circ}$. For a spacing of $d_{x}=d_{y}=\lambda / 8$ between the elements, find the progressive phase shift in both directions, directivity of the array.

