

Quiz VIERNES Uno de los problemas asignados en el prontuario Enviar contestaciones a preguntas en Word por email

Expression for Waves

$$E_{i} = E_{io} \cos(k_{ix}x + k_{iz}z - \omega t)$$

$$E_{r} = E_{ro} \cos(k_{rx}x + k_{rz}z - \omega t)$$

$$E_{t} = E_{to} \cos(k_{tx}x + k_{tz}z - \omega t)$$
where $|k_{i}| = \sqrt{k_{ix}^{2} + k_{iz}^{2}} = \beta_{1} = \omega \sqrt{\mu_{1}\varepsilon_{1}}$

$$k_{ix} = \beta_{1} \sin \theta_{i}$$

$$k_{iz} = \beta_{1} \cos \theta_{i}$$

Summa	rv		
Duni		De constitución	De alla
Property	Normal Incidence	Perpendicular	Parallel
Reflection coefficient	$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$	$\Gamma_{\perp} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_i}$	$\Gamma_{\parallel} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_i}$
Transmission coefficient	$\tau = \frac{2\eta_{2i}}{\eta_2 + \eta_{1i}}$	$\tau_{\perp} = \frac{2\eta_2 \cos\theta_i}{\eta_2 \cos\theta_i + \eta_1 \cos\theta_i}$	$\tau_{\parallel} = \frac{2\eta_2 \cos\theta_i}{\eta_2 \cos\theta_i + \eta_1 \cos\theta_i}$
Relation	$\tau = 1 + \Gamma$	$\tau_{\perp} = 1 + \Gamma_{\perp}$	$\tau_{\parallel} = (1 + \Gamma_{\parallel}) \frac{\cos \theta_i}{\cos \theta_i}$
Power Reflectivity	$R = \left \Gamma\right ^2$	$R_{\perp} = \left \Gamma_{\perp}\right ^2$	$R_{\parallel} = \left \Gamma_{\parallel} \right ^2$
Power Transmissivity	T = 1 - R	$T_{\perp} = 1 - R_{\perp}$	$T_{\parallel} = 1 - R_{\parallel}$
Snell's Law:	$\sin \theta_t = \frac{n_1}{n_2} \sin \theta_i$ w	here $n_2 = \sqrt{\mu_{r2}\varepsilon_{r2}}$	