

Electricity => Magnetism

$>$ In 1820 Oersted discovered that a steady current produces a magnetic field while teaching a physics class.

This is what Oersted discovered accidentally:

Cruz-POI, Electromagnetics UPRM

$$
\oint_{L} \vec{H} \cdot d \vec{l}=\int_{s} \vec{J} \cdot d \vec{S}
$$

Outline

I. Faraday's Law \& Origin of Electromagnetics
II. Transformer and Motional EMF
III. Displacement Current \& Maxwell Equations
IV. Wave Incidence (normal, oblique)
I. Lossy materials
II. Multiple layers

Would magnetism would produce electricity?

- Eleven(11) years later, and at the same time, (Mike) Faraday

$$
V_{e m f}=-N \frac{d \Psi}{d t}
$$ in London \& (Joe) Henry in New York discovered that a time-varying magnetic field would produce an electric voltage!

$$
\oint_{L} E \cdot d l=-N \int_{s} \frac{\partial}{\partial t} B \cdot d S
$$

Electromagnetics was born!

- This is Faraday's Law the principle of motors, hydro-electric generators and transformers operation.

Faraday's Law $\oint_{L} \vec{E} \cdot d \vec{l}=-\int_{s} \frac{\partial \vec{B}}{\partial t} \cdot d \vec{S}$
Ampere's Law $\oint_{L} \vec{H} \cdot d \vec{l}=\int_{s} \vec{J} \cdot d \vec{S}$

Cruz-Pol, Electromagnetics UPRM

Faraday's Law

- For $N=1$ and $B=0$

$$
V_{e m f}=\oint_{L} E \cdot d l=I R
$$

Cruz-Pol, Electromagnetics UPRM

$$
V_{e m f}=-N \frac{d \Psi}{d t}
$$

Maxwell noticed something was missing...

- And added J_{d}, the displacement current
$\oint_{L} H \cdot d l=\int_{S_{1}} J \cdot d S=I_{\text {enc }}=I$
$\oint_{L} H \cdot d l=\int_{S_{2}} J \cdot d S=0$
$\oint_{L} H \cdot d l=\int_{S_{2}} J_{d} \cdot d S=\frac{d}{d t} \int_{S_{2}} D \cdot d S=\frac{d Q}{d t}=I$

At low frequencies $J \gg J_{d}$, but at radio frequencies both terms are comparable in magnitude.

Maxwell Equations in General Form
Differential form Integral Form $\nabla \cdot D=\rho_{v}$ $\oint_{s} D \cdot d S=\int_{v} \rho_{v} d v$ Gauss's Law for E field. $\nabla \cdot B=0$ $\oint_{s} B \cdot d S=0$ Gauss' s Law for H field. Nonexistence of monopole $\nabla \times E=-\frac{\partial B}{\partial t}$ $\oint_{L} E \cdot d l=-\frac{\partial}{\partial t} \int_{s} B \cdot d S$ $\frac{\text { Faraday's Law }}{}$ $\nabla \times H=J+\frac{\partial D}{\partial t}$ $\oint_{L} H \cdot d l=\int_{s}\left(J+\frac{\partial D}{\partial t}\right) \cdot d S$ Ampere's Circuit Law

Would magnetism would produce electricity?

- Eleven years later, and at the same time, Mike Faraday in London and Joe Henry in New York discovered that a time-varying magnetic field would produce an electric current!

$$
\oint_{L} E \cdot d l=-\frac{\partial}{\partial t} \int_{s} B \cdot d S
$$

Special case

- Consider the case of a lossless medium

$$
\sigma=0
$$

- with no charges, i.e. . $\quad \rho_{v}=0$

The waye equation can be derived from Maxwell equations as

$$
\nabla^{2} E+\omega^{2} \mu \varepsilon_{c} E=0
$$

What is the solution for this differential equation?

- The equation of a wave!

Cruz-POI, Electromagnetics UPRM

Electromagnetics was born!

- This is the principle of motors, hydro-electric generators and transformers operation.

This is what Oersted discovered accidentally:

$$
\oint_{L} H \cdot d l=\int_{S}\left(J+\frac{\partial D}{\partial t}\right) \cdot d S
$$

*Mention some examples of em waves

Phasors for harmonic fields

Working with harmonic fields is easier, but requires knowledge of phasor.
\Rightarrow The phasor is multiplied by the time factor, $e^{j \omega t}$, and taken the real part.

$$
\phi=\omega t+\theta
$$

$\operatorname{Re}\left\{r e^{j \phi}\right\}=r \cos (\omega t+\phi)$
$\operatorname{Im}\left\{r e^{j \phi}\right\}=r \sin (\omega t+\phi)$

A wave

- Start taking the curl of Faraday's law

$$
\nabla \times \nabla \times E_{s}=-j \omega \mu \nabla \times H_{s}
$$

- Then apply the vectorial identity

$$
\nabla \times \nabla \times A=\nabla(\nabla \cdot A)-\nabla^{2} A
$$

- And you' re left with

$$
\begin{aligned}
\nabla\left(\nabla \cdot E_{s}\right)-\nabla^{2} E_{s}= & -j \omega \mu(\sigma+j \omega \varepsilon) E_{s} \\
& =-\gamma^{2} E_{s}
\end{aligned}
$$

Several Cases of Media

```
1. Free space
2. Lossless dielectric
( }\sigma=0,\varepsilon=\mp@subsup{\varepsilon}{0}{\prime},\mu=\mp@subsup{\mu}{\textrm{o}}{0
```



```
2. Lossless dielectri
4. Lossy dielectric
5. Good Conductor
```

Permitivity: $\boldsymbol{\varepsilon}_{0}=\mathbf{8 . 8 5 4} \times \mathbf{1 0}^{-12}[\mathbf{F} / \mathrm{m}]$

Permeability: $\mu_{o}=\mathbf{4 \pi} \times 10^{-7}[\mathrm{H} / \mathrm{m}]$

To change back to time domain

- From phasor

$$
E_{x s}(z)=E_{o} e^{-\gamma z}=E_{o} e^{-z(\alpha+j \beta)}
$$

- ...to time domain

$$
E(z, t)=E_{o} e^{-\alpha z} \cos (\omega t-\beta z) \hat{x}
$$

Silmmarv					
	Any medium	Lossless medium ($\sigma=0$)	Low-loss medium $\left(\varepsilon " / \varepsilon^{\prime}<.01\right)$	Good conductor ($\varepsilon^{\prime \prime} / \varepsilon^{\prime}>100$)	Units
\boldsymbol{Q}	$\omega \sqrt{\frac{\mu \varepsilon}{2}\left[\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}-1}\right]}$	0	$\frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\pi f \mu \sigma}$	[Np / m]
β	$\left.\omega \sqrt{\frac{\mu \varepsilon}{2}\left[\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}+1\right.}\right]$	$\omega \sqrt{\mu \varepsilon}$	$\omega \sqrt{\mu \varepsilon}$	$\sqrt{\pi f \mu \sigma}$	[rad/m]
$\boldsymbol{\eta}$	$\sqrt{\frac{j \omega \mu}{\sigma+j \omega \varepsilon}}$	$\sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\frac{\mu}{\varepsilon}}$	$(1+j) \frac{\alpha}{\sigma}$	[ohm]
$u_{\text {c }}$	ω / β	$\frac{1}{\sqrt{\mu \varepsilon}}$	$\frac{1}{\sqrt{\mu \varepsilon}}$	$\sqrt{\frac{4 \pi f}{\mu \sigma}}$	[m/s]
λ	$2 \pi / \beta=u_{p} / f$	$\frac{u_{p}}{f}$	$\frac{u_{p}}{f}$	$\frac{u_{p}}{f}$	[m]
Cruz-Pol, Electrthafrees space; $\quad \varepsilon_{0}=8.85 \quad 10^{=12} \mathrm{~F} / \mathrm{m} \quad \mu_{0}=4 \pi 10^{-7} \mathrm{H} / \mathrm{m} \quad \eta_{0}=120 \pi \Omega$					

The attenuation and phase constants can also be expressed as:

$$
\begin{aligned}
& \alpha=-\omega \sqrt{\mu \varepsilon_{o}} \operatorname{Im}\{\sqrt{\varepsilon}\} \\
& \beta=\omega \sqrt{\mu \varepsilon_{o}} \operatorname{Re}\{\sqrt{\varepsilon}\}
\end{aligned}
$$

Intrinsic Impedance, η

- If we divide E by H, we get units of ohms and
the definition of the intrinsic impedance of a medium at a given frequency.

$$
\eta=\sqrt{\frac{j \omega \mu}{\sigma+j \omega \varepsilon}}=|\eta| \angle \theta_{\eta}
$$

*Not in-phase
for a lossy medium
.

For lossless media,
The wavenumber, k, is equal to The phase constant. This is not so inside waveguides.

Note...
$E(z, t)=E_{o} e^{-\alpha z} \cos (\omega t-\beta z) \hat{x}$
$H(z, t)=\frac{E_{o}}{|\eta|} e^{-\alpha z} \cos \left(\omega t-\beta z-\theta_{\eta}\right) \hat{y}$

- E and H are perpendicular to one another
- Travel is perpendicular to the direction of propagation
- The amplitude is related to the impedance
- And so is the phase
- H lags E

Loss Tangent

- If we divide the conduction current by the displacement current

$$
\frac{\left|J_{c s}\right|}{\left|J_{d s}\right|}=\square
$$

Electromagnetics

Relation between $\tan \theta$ and ε_{c}
$\nabla \times H=\sigma E+j \omega \varepsilon E=j \omega \varepsilon\left[1-j \frac{\sigma}{\omega \varepsilon}\right] E$
$=j \omega \varepsilon_{c} E$
The complex permittivity is
$\varepsilon_{c}=\varepsilon\left[1-j \frac{\sigma}{\omega \varepsilon}\right]=\varepsilon^{\prime}-j \varepsilon^{\prime \prime}$
The loss tangent can be defined also as $\tan \theta=\frac{\varepsilon^{\prime \prime}}{\varepsilon^{\prime}}=\frac{\sigma}{\omega \varepsilon}$
Crnz-Pol, Electromannetics UPRm

2. Lossless dielectric

- Substituting in the general equations:
$\alpha=0, \beta=\omega \sqrt{\mu \varepsilon}$
$u=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu \varepsilon}} \quad \lambda=\frac{2 \pi}{\beta}$
$\eta=\sqrt{\frac{\mu}{\varepsilon}} \angle 0^{\circ}$

Cruz-Pol, Electromagnetics UPRM

$$
\left(\sigma=0, \varepsilon=\varepsilon_{o}, \mu=\mu_{o}\right)
$$

- Substituting in the general equations:

$$
\begin{gathered}
\alpha=0, \beta=\omega \sqrt{\mu \varepsilon}=\omega / c \\
u=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}}=c \quad \lambda=\frac{2 \pi}{\beta} \\
\eta=\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}} \angle 0^{\circ}=120 \pi \Omega=377 \quad \Omega \\
\begin{array}{ll}
E(z, t)=E_{o} \cos (\omega t-\beta z) \hat{x} & \mathrm{~V} / \mathrm{m} \\
H(z, t)=\frac{E_{o}}{\eta_{o}} \cos (\omega t-\beta z) \hat{y} & \mathrm{~A} / \mathrm{m}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& e^{-1}=0.37=(37 \%) \\
& e^{-c z}=e^{-1} \text { at } z=1 / \alpha=\delta
\end{aligned}
$$

$$
\delta=1 / \alpha \quad[\mathrm{m}]
$$ depth at which the electric amplitude is decreased to 37%

Skin depth

Figure 2-10: Attenuation of the magnitude of $E_{x}(z)$ with distance z. The skin depth δ_{s} is the value of z at which $\left|E_{x}(z)\right| /\left|E_{x 0}\right|=e^{-1}$, or $z=\delta_{\mathrm{s}}=1 / \alpha$.

Short Cut ...

- You can use Maxwell's or use

$$
\begin{aligned}
\vec{H} & =\frac{1}{\eta} \hat{k} \times \vec{E} \\
\vec{E} & =-\eta \hat{k} \times \vec{H}
\end{aligned}
$$

where k is the direction of propagation of the wave, i.e., the direction in which the EM wave is traveling (a unitary vector).
Cruz-Pol, Electromagnetics UPRM

Exercises: Wave Propagation in Lossless materials

- A wave in a nonmagnetic material is given by

$$
\vec{H}=\hat{z} 50 e^{-2 y} \cos \left(10^{9} t-5 y\right)[\mathrm{mA} / \mathrm{m}]
$$

Find:
(a) direction of wave propagation,
(b) wavelength in the material
(c) phase velocity
(d) Relative permittivity of material
(e) Electric field phasor
\square
Cruz-Pol, Electromagnetics UPRM

Exercises: Wave Propagation in Lossless materials

- A wave in a nonmagnetic material is given by

$$
\vec{H}=\hat{z} 50 \cos \left(10^{9} t-5 y\right)[\mathrm{mA} / \mathrm{m}]
$$

Find:
(a) direction of wave propagation,
(b) wavelength in the material
(c) phase velocity
(d) Relative permittivity of material
(e) Electric field phasor
\square

Cruz-Pol, Electromagnetics UPRM hitp:///www.hitechmv.com/

Power: Poynting Vector

- Waves carry energy and information
- Poynting says that the net power flowing out of a given volume is = to the decrease in time in energy stored minus the conduction losses.

$$
\vec{S}=\overrightarrow{\mathscr{P}}=\vec{E} \times \vec{H} \quad\left[\mathrm{~W} / \mathrm{m}^{2}\right] \quad \begin{aligned}
& \text { Represents the } \\
& \text { instantaneous } \\
& \text { power vector } \\
& \text { associated to the } \\
& \text { electromagnetic } \\
& \text { wave. }
\end{aligned}
$$

Poynting Vector Derivation...

- Which means that the total power coming out of a volume is either due to the electric or magnetic field energy variations or is lost as ohmic losses.

Cruz-Pol, Electromagnetics UPRM

Time Average Power

- The Poynting vector averaged in time is

$$
\vec{S}_{\text {ave }}=\frac{1}{T} \int_{0}^{T} \overrightarrow{\mathcal{S}} d t=\frac{1}{T} \int_{0}^{T}(\vec{E} \times \vec{H}) d t=\frac{1}{2} \operatorname{Re}\left\{\vec{E}_{s} \times \vec{H}_{s}^{*}\right\}
$$

- For the general case wave:

$E_{s}=E_{o} e^{-c \varepsilon} e^{-j \beta z} \hat{x}$
$H_{s}=\frac{E_{o}}{\eta} e^{-c \alpha} e^{-j \beta z} \hat{y}$

$\vec{S}_{\text {ave }}=\frac{\left|E_{o}\right|^{2}}{2|\eta|} e^{-2 \alpha z} \cos \theta_{\eta} \hat{z}$
$\left[\mathrm{W} / \mathrm{m}^{2}\right]$

For general lossy media
Cruz-Pol, Electromagnetics UPRM

Total Power in W

The total power through a surface S is

$$
P_{\text {ave }}=\int_{S} \overrightarrow{\mathscr{P}}_{\text {ave }} \cdot d S \quad[W]
$$

- Note that the units now are in Watts
- Note that the dot product indicates that the surface area needs to be perpendicular to the Poynting vector so that all the power will go thru. (give example of receiver antenna)

```
Cruz-Pol, Electromagnetics UPRM
```


TEM wave

Transverse ElectroMagnetic = plane wave

- There are no fields parallel to the direction of propagation,
- only perpendicular (transverse).
- If have an electric field $E_{x}(z)$
- ...then must have a corresponding magnetic field $H_{x}(z)$
- The direction of propagation is $\hat{a}_{E} \times \hat{a}_{H}=\hat{a}_{k}$

Cruz-Pol, Electromagnetics UPRM

Why do we care??

- Antenna applications -
- Antenna can only TX or RX a polarization it is designed to support. Straight wires, square waveguides, and similar rectangular systems support linear waves (polarized in, one direction, often) Circular waveguides, helic
- Remote Sensing and Radar Applications -
- Many targets will reflect or absorb EM waves differently for different polarizations. Using multiple polarizations can give different information and improve results. Rain attenuation effect.
- Absorption applications -
- Human body, for instance, will absorb waves with E oriented from head to toe better than side-to-side, esp. in grounded cases. Also the frequency at which maximum absorption occurs is different for these two polarizations. This has ramifications in safety guidelines Criz-Pol, Electromagnetics atpRim

Exercises: Power

1. At microwave frequencies, the power density considered safe for human exposure is $1 \mathrm{~mW} / \mathrm{cm}^{2}$. A radar radiates a wave with an electric field amplitude E that decays with distance as $E(R)=3000 / \mathrm{R}[\mathrm{V} / \mathrm{m}]$, where R is the distance in meters. What is the radius of the unsafe region?

- Answer: 34.6 m

2. A 5 GHz wave traveling in a nonmagnetic medium with $\varepsilon_{\mathrm{r}}=9$ is characterized by $\vec{E}=\hat{y} 3 \cos (\omega t+\beta x)-\hat{z} 2 \cos (\omega t+\beta x)[\mathrm{V} / \mathrm{m}]$ Determine the direction of wave travel and the average power density carried by the wave

- Answer: $\vec{S}_{\text {ave }}=-\hat{x} 0.05\left[\mathrm{~W} / \mathrm{m}^{2}\right]$
$C_{\text {ruz-POI, Electromagnetics }}$ UPRM

Polarization of a wave

IEEE Definition:

The trace of the tip of the E-field vector as a function of time seen from behind.

Basic types:

- Vertical, E_{x}
$E_{x s}(z)=E_{o x} e^{-j \beta z}$
$E_{x}(z)=E_{o x} \cos (\omega t-\beta z) \hat{x}$
- Horizontal, E
$E_{y s}(z)=E_{y}=E_{o y} e^{-j \beta_{z+\delta}}$
$E_{y}(z)=E_{o y} \cos (\omega t-\beta z+\delta) \hat{y}$ Cruz-Pol, Electromagnetics UPRM

Electromagnetics

Polarization

- In general, plane wave has 2 components; in $\boldsymbol{x} \& \boldsymbol{y}$

$$
E(z)=\hat{x} E_{x}+\hat{y} E_{y}
$$

- And y-component might be out of phase wrt to x component, δ is the phase difference between x and y.

$$
\begin{aligned}
& E_{x}=E_{o x} e^{-j \beta z} \\
& E_{y}=E_{o y} e^{-j \beta z+\delta}
\end{aligned}
$$

$E_{o x}=a_{x} \angle 0^{\circ}$
$E_{o y}=a_{y} e^{j \delta}$

Several Cases

- Linear polarization: $\delta=\delta_{y}-\delta_{x}=0^{\circ}$ or $\pm 180^{\circ} n$
- Circular polarization: $\delta_{y}-\delta_{x}= \pm 90^{\circ}$ and $\mathrm{a}_{x}=a_{y}$ RHC is -90°
- Elliptical polarization: $\delta_{y}-\delta_{x}= \pm 90^{\circ}$ and $E_{o x} \neq E_{o y}$, or $\delta=\neq 0^{\circ}$ or $\neq 180^{\circ} \mathrm{n}$ even if $E_{o x}=E_{o y}$
- Unpolarized- (Natural radiation)

- X and Y components have different amplitudes $a_{x} \neq a_{y}$ and $\delta= \pm 90^{\circ}$
- Or $\delta \neq \pm 90^{\circ}$ and $E_{o x}=E_{o y}$,

Cruz-Pol, Electromagnetics UPRM

Figure 2-7: Right-hand circularly polarized wave radiated by a helical antenna.

$$
\begin{aligned}
& \sin \left(\xi \pm 90^{\circ}\right)= \pm \cos (\xi) \quad \sin \left(\xi \pm 180^{\circ}\right)=-\sin (\xi) \\
& \cos \left(\xi \pm 90^{\circ}\right)=\mp \sin (\xi) \quad \cos \left(\xi \pm 180^{\circ}\right)=-\cos (\xi) \\
& >\text { Determine the polarization state of a plane wave with } \\
& \text { electric field: } \\
& \text { a. } E(z, t)=\hat{x} 3 \cos \left(\omega t-\beta z+30^{\circ}\right)-\hat{y} 4 \sin \left(\omega t-\beta z+45^{\circ}\right) \\
& \text { b. } E(z, t)=\hat{x} 3 \cos \left(\omega t-\beta \mathrm{z}+45^{\circ}\right)+\hat{y} 8 \sin \left(\omega t-\beta \mathrm{z}+45^{\circ}\right) \\
& \text { c. } E(z, t)=\hat{x} 4 \cos \left(\omega t-\beta z-45^{\circ}\right)-\hat{y} 4 \sin \left(\omega t-\beta z+45^{\circ}\right) \\
& \text { d. } E_{s}(y)=14(\hat{x}-j \hat{z}) \mathrm{e}^{-\mathrm{j} \beta y} \\
& \text { a. Elliptic } \\
& \text { Cruz-Pol, Electromagnetics UPRM } \\
& \text { b. -90, RHEP } \\
& \text { c. } \mathrm{LP}<135 \\
& \text { d. }-90, \text { RHCP }
\end{aligned}
$$

Decibel Scale

- In many applications need comparison of two powers, a power ratio, e.g. reflected power, attenuated power, gain,..
- The decibel (dB) scale is logarithmic

$$
\begin{aligned}
& G=\frac{P_{\text {out }}}{P_{\text {in }}} \\
& G[d B]=10 \log \left(\frac{P_{\text {out }}}{P_{\text {in }}}\right.
\end{aligned}
$$

- Note that for voltages, the log is multiplied by 20 instead of 10.

Power Ratios			
$\qquad$$\mathbf{G}$ $\mathbf{G}[\mathrm{dB}]$ $10 \times$ 10 dB 100 20 dB 4 6 dB 2 3 dB 1 0 dB 0.5 0.25 -3 dB 0.1 .10 dB 0.001 .30 dB			

Attenuation rate, A

- Represents the rate of decrease of the magnitude of $P_{\text {ave }}(z)$ as a function of propagation distance

$$
A=10 \log \left(\frac{P_{\text {ave }}(z)}{P_{\text {ave }}(0)}\right)=10 \log \left(e^{-2 c c}\right)
$$

Assigned problems ch 2 1-3,5,7,9,13,16,17,24,26,28, 32,36, 37,40,42, 43

Reflection and Transmission

Wave incidence

- Wave arrives at an angle
- Snell's Law and Critical angle
- Parallel or Perpendicular
- Brewster angle

Reflection at Normal Incidence

Now in terms of equations ...

$$
\begin{aligned}
& \text { - Incident wave } \\
& \vec{E}_{i s}(z)=E_{i o} e^{-\gamma_{1} z} \hat{x} \quad \begin{array}{c}
\text { Incident } \\
\text { wave }
\end{array} \\
& \vec{H}_{i s}(z)=H_{i o} e^{-\gamma_{1} z} \hat{y}=\frac{E_{i o}}{\eta_{1}} e^{-\gamma_{1} z} \hat{y}
\end{aligned}
$$

Normal Incidence

- Reflection coefficient, ρ

- Transmission coefficient, τ

$$
\tau=\frac{E_{t o}}{E_{i o}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}
$$

Note:

- $1+\rho=\tau$
-Both are dimensionless and may be complex
$\cdot 0 \leq|\rho| \leq 1$

The total fields

- At medium 1 and medium 2

$$
\begin{array}{ll}
\vec{E}_{1}=\vec{E}_{i}+\vec{E}_{r} & \vec{E}_{2}=\vec{E}_{t} \\
\vec{H}_{1}=\vec{H}_{i}+\vec{H}_{r} & \vec{H}_{2}=\vec{I}
\end{array}
$$

Tangential components must be continuous at the interface

$$
\begin{aligned}
& \vec{E}_{i}(0)+\vec{E}_{r}(0)=\vec{E}_{t}(0) \\
& \vec{H}_{i}(0)+\vec{H}_{r}(0)=\vec{H}_{t}(0)
\end{aligned}
$$

Table 2-3: Expressions for EM fields in lossless and Jossy media under normal incidence. ${ }^{\dagger}$

Electromagnetics

Tangential E must be Continuous

$$
\begin{aligned}
& \vec{E}_{i}(z=0)+\vec{E}_{r}(z=0)=\vec{E}_{t}(z=0) \\
& \omega_{i}=\omega_{r}=\omega_{t}=\omega \quad \longleftarrow \quad \begin{array}{l}
\text { From this we know that } \\
\text { frequency is a property }
\end{array} \\
& \begin{array}{l}
\text { frequency is a property } \\
\text { the wave. So is color. }
\end{array} \\
& k_{i x}=k_{r x}=k_{t x}=k_{x} \\
& k_{i y}=k_{r y}=k_{t y}=k_{y} \\
& \text { So } 700 \mathrm{~nm} \text { is not always red!! } \\
& k_{i x}=k_{r x} \\
& \beta_{1} \sin \theta_{i}=\beta_{1} \sin \theta_{r} \quad \theta_{i}=\theta_{r}
\end{aligned}
$$

Expression for fields

$E_{i}=E_{i o} \cos \left(k_{i x} x+k_{i z} z-\omega t\right)$
$E_{r}=E_{r o} \cos \left(k_{r x} x+k_{r z} z-\omega t\right)$
$E_{t}=E_{t o} \cos \left(k_{t x} x+k_{t z} z-\omega t\right)$

$\square \xrightarrow[\boldsymbol{k}_{\boldsymbol{i}}^{\theta_{i}}]{\boldsymbol{k}_{i z}} \boldsymbol{k}_{i x}$| where $\left\|k_{i}\right\|=\sqrt{k_{i x}^{2}+k_{i z}^{2}}=\beta_{1}=\omega \sqrt{\mu_{1} \varepsilon_{1}}$ |
| :--- |
| $\begin{array}{l}k_{i x}=\beta_{1} \sin \theta_{i} \\ k_{i z}=\beta_{1} \cos \theta_{i}\end{array}$ |

Snell Law

- Equating, we get $k_{i x}=k_{t x}$

$$
\beta_{1} \sin \theta_{i}=\beta_{2} \sin \theta_{1}
$$

$$
n_{1}=\frac{c}{u_{1}}=\sqrt{\varepsilon_{r 1}}
$$

Also written as,
where, the index of refraction of a medium, n_{i}, is defined as the ratio of the phase velocity in free space (c) to the phase velocity in the medium.

Critical angle, θ_{c} ..All is reflected	$\begin{aligned} & \sin \theta_{c}=\frac{n_{2}}{n_{1}} \sin \theta_{t}\left[\theta_{t}=90^{\circ}\right] \\ & =\frac{n_{2}}{n_{1}}=\sqrt{\frac{\varepsilon_{r 2}}{\varepsilon_{r 1}}} \\ & \text { (for } \left.\mu_{1}=\mu_{2}\right) \end{aligned}$
-When $\theta_{t}=90^{\circ}$, the refracted wave flows along the surface and no energy is transmitted	
into medium 2.	Example; $\varepsilon_{r 1}=9 ; \varepsilon_{r 2}=4$$\begin{gathered} \sin \theta_{c}=\sqrt{\frac{\varepsilon_{r 2}}{\varepsilon_{r 1}}} \sin 90^{\circ} \\ \sin 42^{\circ}=\sqrt{\frac{4}{9}}(1)=.67 \\ \sin 40^{\circ}=.64=.67\left(\sin 73^{\circ}\right) \\ \sin 50^{\circ}=.77=.67\left(\sin ? ?^{\circ}\right) \end{gathered}$
-The value of the angle of incidence corresponding to	
this is called critical angle, θ_{c}.	
- If $\theta_{i}>\theta_{c}$, the incident wave is totally reflected.	

Figure 2-16: The plane of incidence is the plane containing the direction of wave travel, $\hat{\mathbf{k}}_{\mathrm{i}}$, and the surface normal to the boundary. In the present case the plane of incidence containing $\hat{\mathbf{k}}_{i}$ and $\mathbf{2}$ coincides with the plane of the paper. A wave is (a) perpendicularly polarized (also called horizontally polarized) when its electric field vector is perpendicular to the plane of incidence and (b) parallel polarized (also called vertically polarized) when its electric field vector lies in the plane of incidence.

Optical fibers have cylindrical fiber core with index of refraction n_{f} surrounded by another cylinder of lower, $n_{c<} n_{f}$, called a cladding.

(a) Optical Fiber

(b) Suceptive intemal reflections

Waves can be guided along optical fibers as long as the reflection angles exceed the criticaf liginure for from Ulaby, 1999] total internal reflection.

Use Snell and critical angle to derive:

- For total reflection:
$\sin \theta_{3} \geq \sin \theta_{c}=\frac{n_{2}}{n_{1}} \quad \theta_{2}+\theta_{3}=90^{\circ}$
Acceptance angle
$\sin \theta_{a} \leq \sqrt{\left(n_{f}^{2}-n^{2}\right)}$

Parallel (V) polarization

- It's defined as E is \|| to incidence plane

Which components are tangent to the interface between two surfaces?

- y and x

At $z=0$ (interface):
$\hat{x}: E_{i 0}\left(\cos \theta_{i}\right) e^{-j \beta_{1}\left(\sin \theta_{t}+2 \cos \theta_{i}\right)}+E_{r o}\left(\cos \theta_{r}\right) e^{-j \beta_{1}\left(\sin \theta_{r}-z \cos \theta_{i}\right)}=E_{i o}\left(\cos \theta_{t}\right) e^{-j \beta_{2}\left(\sin \theta_{t}+2 \cos \theta_{i}\right)}$

$$
\left\{\begin{array}{l}
\hat{x}: E_{i \text { i }} \cos \theta_{i}+E_{r r} \cos \theta_{r}=E_{t o} \cos \theta_{t} \\
\hat{y}: \frac{E_{i o}}{\eta_{1}}-\frac{E_{r o}}{\eta_{1}}=\frac{E_{t o}}{\eta_{2}}
\end{array}\right.
$$

Equating for continuity, the tangent fields

Reflection and Transmission Coefficients: Parallel (V) Incidence

Reflection
$\rho_{\| l}=\frac{E_{r o}}{E_{i o}}=\frac{\eta_{2} \cos \theta_{t}-\eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}}$
$\tau_{\| l}=\frac{E_{t o}}{E_{i o}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}}$
where $\quad \tau_{\|}=\left(1+\rho_{\|}\right) \frac{\cos \theta_{i}}{\cos \theta_{t}}$

Reflection and Transmission
Coefficients: Perpendicular(H) Incidence
$\rho_{\perp}=\frac{E_{r o}}{E_{i o}}=\frac{\eta_{2} \cos \theta_{i}-\eta_{1} \cos \theta_{t}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}}$
$\tau_{\perp}=\frac{E_{i o}}{E_{i o}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}}$
$1+\rho_{\perp}=\tau_{\perp}$

$$
\begin{gathered}
\rho_{\perp}=\frac{E_{r o}}{E_{i o}}=\frac{\eta_{2} \cos \theta_{i}-\eta_{1} \cos \theta_{t}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}} \\
\tau_{\perp}=\frac{E_{t o}}{E_{i o}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}} \\
1+\rho_{\perp}=\tau_{\perp}
\end{gathered}
$$

Table 2-5: Expressions for ρ, τ, , and \mathbb{T} for wave incidence from a lossless medium with intrinsic impedance η_{1} onto a second lossless medium with intrinsic impedance η_{2}. Angles θ_{1} and θ_{2} are the angles of incidence and transmission, respectively. ${ }^{\dagger}$			
Property	Normal Incidence $\theta_{1}=\theta_{2}=0$	Horizontal Polarization	Vertical Polarization
Reflection coefficient	$\rho=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}$	$\rho_{\mathrm{⿺}}=\frac{\eta_{2} \cos \theta_{1}-\eta_{1} \cos \theta_{2}}{\eta_{2} \cos \theta_{1}+\eta_{1} \cos \theta_{2}}$	$\rho_{v}=\frac{\eta_{2} \cos \theta_{2}-\eta_{1} \cos \theta_{1}}{\eta_{2} \cos \theta_{2}+\eta_{1} \cos \theta_{1}}$
Transmission coefficient	$\tau=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}$	$\tau_{\mathrm{h}}=\frac{2 \eta_{2} \cos \theta_{1}}{\eta_{2} \cos \theta_{1}+\eta_{1} \cos \theta_{2}}$	$\tau_{v}=\frac{2 \eta_{2} \cos \theta_{1}}{\eta_{2} \cos \theta_{2}+\eta_{1} \cos \theta_{1}}$
Relation of ρ to τ	$\tau=1+\rho$	$\tau_{\text {h }}=1+\rho_{\text {h }}$	$\tau_{\mathrm{v}}=\left(1+\rho_{\mathrm{v}}\right) \frac{\cos \theta_{1}}{\cos \theta_{2}}$
Reflectivity	$\Gamma=\|\rho\|^{2}$	$\Gamma^{\text {h }}=\left\|\rho_{\rho_{\mathrm{h}}}\right\|^{2}$	$\Gamma^{v}=\left\|\rho v^{\prime}\right\|^{2}$
Transmissivity	$\mathrm{T}=\|\tau\|^{2}\left(\frac{\eta_{1}}{\eta_{2}}\right)$	$\mathbb{T}^{\mathrm{h}}=\left.\left\|\tau_{\mathrm{b}}\right\|\right\|^{\frac{\eta_{1}}{} \frac{\cos \theta_{2}}{\eta_{2} \cos \theta_{1}}}$	$\mathrm{T}^{\mathrm{N}}=\left\|\tau_{\mathrm{v}}\right\|^{2} \frac{\eta_{1} \cos \theta_{2}}{\eta_{2} \cos \theta_{1}}$
Relation of $\mathrm{\Gamma}$ to T	$\mathrm{T}=1-\mathrm{\Gamma}$	$\mathrm{T}^{\mathrm{h}}=1-\mathrm{r}^{\text {h }}$	$\mathrm{T}^{\mathrm{v}}=1-\mathrm{I}^{\mathrm{v}}$
Notes: $\sin \theta_{2}=\sqrt{\varepsilon_{1}^{\prime} / \varepsilon_{2}^{\prime}} \sin \theta_{1} ; \eta_{1}=\eta_{0} / \sqrt{\varepsilon_{1}^{\prime}} ; \eta_{2}=\eta_{0} / \sqrt{\varepsilon_{2}^{\prime}}$.			

Property	Normal Incidence	Perpendicular	Parallel		
Reflection coefficient	$\rho=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}$	$\rho_{1}=\frac{\eta_{2} \cos \theta_{1}-\eta_{1} \cos \theta_{2}}{\eta_{2} \cos \theta_{1}+\eta_{1} \cos \theta_{2}}$	${ }^{\text {a }}$		
Transmission coefficient	$\tau=\frac{2 \eta_{2 i}}{\eta_{2}+\eta_{1 t}}$	$\tau_{1}=\frac{2 \eta_{2} \cos \theta_{1}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{1}}$	$r_{1}=\frac{2 \eta_{2} \cos \theta_{1}}{\eta_{2} \cos \theta_{1}+\eta_{1} \cos \theta_{1}}$		
Relation	$\tau=1+\rho$	$\tau_{12}=1+\rho_{12}$	$t^{\tau_{12}=\left(1+\rho_{2}\right)}$		
Power Reflectivity	$\Gamma=\|\rho\|^{2}$	$\Gamma_{H}=\left\|\rho_{H}\right\|^{2}$	$\Gamma_{\\|}=\left\|\rho_{\\| 1}\right\|^{2}$		
Power Transmissivity	$T=1-\Gamma$	$T_{\perp}=1-\Gamma_{\perp}$	$T_{\\|}=1-\Gamma_{\\|}$		
Snell's Law: Cnz-Pol Eecertomangeneics vel $\sin \theta_{t}=\frac{n_{1}}{n_{2}} \sin \theta_{i}$ where $n_{2}=\sqrt{\mu_{r 2} \varepsilon_{r 2}}$					

Brewster angle, θ_{B}

- Is defined as the incidence angle at which the reflection coefficient is 0 (total transmission).

$$
\begin{array}{ll}
\Gamma_{1}=\frac{\eta_{2} \cos \theta_{1}-\eta_{1} \cos \theta_{B}}{\eta_{2} \cos \theta_{1}+\eta_{1} \cos \theta_{B}}=0 & * \boldsymbol{\theta}_{B} \text { is } \\
\eta_{2} \cos \theta_{1}-\eta_{1} \cos \theta_{B}=0 & \text { known as } \\
\sin \theta_{B_{1}}=\sqrt{\frac{\left.1-\varepsilon_{1} \mu_{2} / \varepsilon_{2} \mu_{1}\right)}{1-\left(\varepsilon_{1} / \varepsilon_{2}\right)^{2}}} & \text { the } \\
\text { polarizing } \\
\text { angle }
\end{array}
$$

http://www.amanogawa.com/archive/Oblique/Oblique-2.html
lar

Dr. S. Cruz-Pol, INEL 4152-
Electromagnetics

Table 2-6: Oblique incidence in a lossless medium onto a lossy medium. ${ }^{\dagger}$	
Horizontal Polarization	Vertical Polarization
Notes: $\begin{array}{lc} k_{1}=\frac{2 \pi}{\lambda_{0}} \sqrt{\varepsilon_{1}^{\prime}} & \eta_{1}=\frac{\eta_{0}}{\sqrt{\varepsilon_{1}^{\prime}}} \\ \gamma_{2}=\alpha_{2}+j \beta_{2}=j \frac{2 \pi}{\lambda_{0}} \sqrt{\varepsilon_{2}} & \gamma_{2} \sin \theta_{2}=k_{1} \sin \theta \\ & \cos \theta_{2}=\left[1-\left(\frac{j k_{1}}{\gamma_{2}} \sin \theta_{1}\right)^{2}\right]^{1 / 2}= \end{array}$	$\begin{gathered} \eta_{2}=\frac{\eta_{0}}{\sqrt{\varepsilon_{2}}} \\ \varepsilon_{2}=\varepsilon_{2}^{\prime}-j \varepsilon_{2}^{\prime \prime} \\ =\left[1-\left(\frac{\varepsilon_{1}^{\prime}}{\varepsilon_{2}^{\prime}-j \varepsilon_{2}^{\prime \prime}}\right) \sin ^{2} \theta_{1}\right]^{1 / 2} \end{gathered}$

Reflections at interfaces

- At the top boundary, ρ_{12},
- At the bottom boundary, ρ_{23}

For H polarization:

$$
\rho_{12}=\frac{\eta_{2} \cos \theta_{1}-\eta_{1} \cos \theta_{2}}{\eta_{2} \cos \theta_{1}+\eta_{1} \cos \theta_{2}} \quad \rho_{23}=\frac{\eta_{3} \cos \theta_{2}-\eta_{2} \cos \theta_{3}}{\eta_{3} \cos \theta_{2}+\eta_{2} \cos \theta_{3}}
$$

For V polarization:

$$
\rho_{12}=\frac{\eta_{2} \cos \theta_{2}-\eta_{1} \cos \theta_{1}}{\eta_{2} \cos \theta_{2}+\eta_{1} \cos \theta_{1}} \quad \rho_{23}=\frac{\eta_{3} \cos \theta_{2}-\eta_{2} \cos \theta_{3}}{\eta_{3} \cos \theta_{2}+\eta_{2} \cos \theta_{3}}
$$

Cruz-Pol, Electromagnetics UPRM

Dr. S. Cruz-Pol, INEL 4152-
Electromagnetics

$$
\underset{\substack{\rho=\rho_{12}+\tau_{21} \rho_{23} 厶^{2} \tau_{12}+\tau_{21} \rho_{21} \rho_{23^{2}}^{2} \tau_{12}+\ldots \\
=\rho_{12}+\tau_{12} \tau_{12} \rho_{23} 3^{2}\left(1+x+x^{2}+\ldots\right)}}{\text { fin Polarization }} \begin{gathered}
\tau_{12}=1+\rho_{12}=1+\rho_{21}=1-\rho_{12}
\end{gathered}
$$

Substituting the geometric series: $\quad \frac{1}{1-x}=1+x+x^{2}+\ldots$

$$
\quad\left(1-\rho_{12}\right)\left(1-\rho_{12}\right) \rho_{23} \iota^{2}
$$ $\rho=\rho_{12}+\frac{\left(1-\rho_{12}\right)\left(1-\rho_{12}\right) \rho_{23} \iota^{2}}{1-\rho_{21} \rho_{23} \iota^{2}}$

And then Substituting $\mathcal{L}=e^{-\gamma_{2} d \cos \theta_{2}}$ and $\rho_{21}=-\rho_{12}$


```
Cruz-Pol, Electromagnetics UPRM
```


Electrical Engineering, UPRM

