ICOM 5018
Network Security and Cryptography

Description
This course introduces and provides practical experience in network security issues and cryptographic techniques. Cryptographic algorithms and protocols are introduced and their use in secure protocols such as secure shell (SSH) and secure mail (Pretty Good Privacy/PGP) are studied.

Topics
- Conventional encryption, algorithms and techniques
- Public key cryptography and a little number theory
- Authentication and hash functions
- Digital signatures and authentication protocols
- Electronic mail, IP, and web security
- The cryptographic techniques used in intruders, viruses, and worms
- Firewalls
- Cryptanalysis methods and methods of exploiting protocol weaknesses
- Legal and social issues – current legislation

Instructor – Thomas L. Noack (details at-amadeus.uprm.edu/~noack/crypto)

Projects – Many possibilities – protocol weaknesses, interdisciplinary

Prerequisites – ICOM 5007 and INEL 4307 or permission of instructor
What crypto does

Confidentiality
Authentication
Signature – is this the only copy
Content verification – did someone modify
When was this signed – still valid
Individual identification at a distance
Key distribution – with a key server
Key agreement – mutual agreement, no global server
Where you see it

Commercial transactions
 Internet and electronic purchases
 Electronic fund transfers and the money laundromat
Medical and other data
 Privacy of medical records
 But getting insurance benefits
Other privacy applications

Data security and authentication
 Personnel and payroll records
 Individual files on a server
 Controlled database access – you can see your info –

Intellectual property protection
 DVDs, Music, eBooks, movie content

System login and passwords
The components of crypto

Private key crypto
 Key must be kept secret
 Separate key for each group of users

Public key crypto
 Knowing public key doesn’t reveal private key
 Can be used for secrecy or authentication
More components

Hash and message authentication
 Message digest – long message, short authenticator
 Saves encryption effort
 One-way function – only encrypted password is stored

Key exchange
 You can agree on a key without having a trusted key distributor
Some basic principles

Don’t use secret or amateur algorithms

The crypto community tries to break the published algorithms – if they haven’t, you can trust them a bit more

Algorithm strength should depend only on key length alone – known method, nearly unguessable key

Again, don’t invent your own – read the literature and understand the problems and weaknesses
What we study - principles

- Conventional encryption, algorithms and techniques
- Public key cryptography and a little number theory
- Authentication and hash functions
- Digital signatures and authentication protocols
What we study - applications

- Electronic mail, IP, and web security
- The cryptographic techniques used in intruders, viruses, and worms
- Firewalls
- Cryptanalysis methods and methods of exploiting protocol weaknesses
- Legal and social issues – current legislation
What are the difficult parts

Studying the weakness of systems and protocols

 Historically, and now, little procedure weaknesses and subtle traps have changed history

Understanding how attacks work

Understanding how it fits together

 Complete systems include browsers and outside systems over which you don’t have control – crypto is global, just like the internet
The 4-rotor Enigma, with wiring
pictures from Budiansky, Stephen, *Battle of Wits*

Uses the polyalphabetic principle
Repositioning the rotors gives a new alphabet
The rotors are stepped at each character
It was broken at least partly because of operator carelessness
The *Bombe*, used to break Enigma messages

Comments
This is actually a copy of the machine conceived by Turing.
It still used a plugboard approach rather than a strictly electronic stored program.
Material captured from ships and submarines was also used.
This was a combination of known plaintext and brute force cryptanalysis.
It is not a Turing machine in the computer science sense.

picture from Budiansky, Stephen, *Battle of Wits*