
PERFORMANCE OF HYPERSPECTRAL IMAGING ALGORITHMS USING
ITANIUM ARCHITECTURE

Wilfredo Lugo-Beauchamp1, Kennie Cruz2, Carmen L. Carvajal-Jiménez2, and Wilson Rivera2

1 Software Solutions Group
Hewlett Packard Technology Center

Aguadilla, Puerto Rico, USA
Wilfredo.Lugo@hp.com

2Electrical and Computer Engineering Department
University of Puerto Rico, Mayagüez Campus
P.O.Box 9042, Mayaguez, Puerto Rico, USA

{Kennie.Cruz, Carmen.Carjaval,
Wilson.Rivera}@ece.uprm.edu

Abstract

 This paper describes the experiences and results on
implementing a set of hyperspectral imaging analysis
algorithms on the Itanium Processor Family. On
Itanium architecture all instructions are transformed
into bundles of instructions and these bundles are
processed in a parallel fashion by the different
functional units. Experimental results show that
exploiting implicit parallelism and linking HP
Mathematical LIBrary optimized for Itanium yield
significant improvement in performance.

Keywords: Itanium, IA64, Remote Sensing,
Hyperspectral Imaging, Image Classifiers, HP-MLIB

1. Introduction

 Sensors based on imaging spectrometry or so called
hyperspectral imagers collect high spectral resolution
data over a couple of hundred of wavelengths effectively
producing an image where at each pixel we get the
spectral response of the object(s) in the field of view of
the sensor. Hyperspectral Imaging (HSI) analysis is
based on the concept of imaging spectrometry where
spectral and spatial information is used to identify or
detect objects, or estimate parameters of interest. As the
object of interest is embedded in a complex media (i.e.
coastal waters or skin), the measured signature is a
distorted version of the original object signature (e.g. a
coral reef or a blood vessel) mixed with clutter. By large
hyperspectral imaging analysis concentrates on
dimensionality reduction and classification algorithms.
Dimensionality reduction algorithms reduce the data
volume (dimensionality), without loss of critical
information, so that it can be processed efficiently.
Classification of a hyperspectral image sequence, in
turn, identifies which pixels contain various spectrally
distinct materials.

 Different classification metrics have been proposed
from minimum distance, such as Euclidean, Fisher Linear
Discriminant, and Malahanobis, to maximum likelihood
[1] to correlation matched filter-based approaches such as
spectral signature matching [2]. There are two major
techniques to image classification: supervised and
unsupervised. In supervised classification techniques, an
analyst develops quantitative descriptions of the spectral
characteristics of the various classes of interest for a
particular scene. These descriptions are then used as
reference spectral signatures against which every pixel in
an image is compared. The pixels are classified according
to the spectral signature they most closely resemble. In
unsupervised classification, the algorithms do not use
training data as the basis for classification. Instead, the
algorithms used examine the unknown pixels in the image
and aggregate them into various classes according to the
clusters found in the spectral space that contains the
image.

 We have implemented a set of hyperpectral imaging
analysis algorithms. These algorithms have been tuned
and ported to be run on the Itanium Processor Family. We
describe in this paper the experiences and results on
implementing these algorithms. The structure of this paper
is as follows. Section 2 provides an overview of
hyperspectral imaging algorithms. Section 3 discusses
implementation issues. Section 4 presents the results and
discusses related work. Finally, section 5 draws
conclusions and potential future work.

2. Background

A complete description of hyperspectral algorithms can be
found elsewhere in [3]. In the next subsections we describe
briefly each of the algorithms we implemented on Itanium.

449-199 327

mailto:Wilfredo.Lugo@hp.com
melissa

2.1 Principal Component Analysis (PCA)

 Principal Component Analysis (PCA) is a procedure
for transforming a set of correlated variables into a new
set of uncorrelated variables. This transformation is a

rotation of the original axes to new orientations that are
orthogonal to each other and therefore there is no
correlation between variables. In this new representation,
the first axe accounts for the maximum amount of v

ariation. The second axe contains the maximum
amount of variation orthogonal to the first axe. The
third axe contains the maximum amount of variation
orthogonal to the first and second axes and so on The
data or hyperspectral image is represented by a matrix
where each row represents a pixel or observation and

each column represents a wavelength or spectral band.
Given an n-by-n image with N bands the data matrix has
n2 rows and N columns. Using this data matrix we can
calculate the covariance matrix for the whole data. The
covariance matrix, of dimension N-by-N, provides the
relation between spectral bands. Th

e orthogonal basis for the covariance matrix can be
obtained by finding its eigenvalues and eigenvectors. A
total of N eigenvalues 1, 2, 3, ... N-1, N are
obtained from the covariance matrix. Each of these
eigenvalues has a correspondent eigenvector that is
orthogonal to the other vectors. If the eigenvalues are
ordered from maximum to minimum the vector related
to the biggest value contains the direction of the largest
variance of the data. In this way we can find directions
in which the data set has the most significant amount of
energy.

 Since the first K direction vectors represent a
significant amount of energy of the whole set, we can
reduce the dimensionality of the original observations or
pixels by projecting each one of them to the first K
orthogonal vectors. This reduces the dimensionality
from N to K reducing considerably the complexity and
computational workload.

2.2 Euclidean Distance Classifier (EUC)

 In the classification area we want to obtain a
thematic map that classifies each pixel of the image as a
member of one specific class among C classes. The
variable C is a parameter that establishes beforehand the
number of classes in which each vector pixel can be
classified. How this parameter is obtained depends
totally on the region of interest and on the prior
knowledge of the area. A classification algorithm takes
C initial points on the image. In this case those points
are considered the signatures of the materials we want
to detect. The distances between each vector pixel on
the image and the C vectors are calculated using the
Euclidean metrics in equation (1), where X is the vector
pixel, Mi is the mean vector for the class i and N is the
number of bands.

gi(X)).()(i
T

i MXMX −−= (1)

 Each vector pixel is then assigned as a member of
the closest C point. Next, a new centroid is calculated

for each of the resultant C classes. Then the pixels are
reclassified with the new centroids. The process of
classification continues will until none of the vector pixels
change from one class to another. The algorithm stops
when there is not signifiacant change in the vector of
pixels.

2.3 Maximum Likelihood Classifier (ML)

 This classifier is based on statistical information.
Assuming that the vector pixel X is normally distributed
with mean µ and variance Σ, where both µ and Σ are
unknown, the likelihood function becomes:

hi(x) =).()(
2
1ln

2
1 1

ii
T

ii XX υυ −Σ−−Σ− − (2)

 The vector pixel X belongs to the class that has the
functions with the largest hi(X). When the above equation
is maximized and solved we have:

,1
1

∑
=

=
in

k
k

i
i X

n
υ (3)

.))((
1

1
1

∑
=

−−
−

=Σ
in

k

T
ikik

i
i XX

n
υυ (4)

 These mean and covariance have to be recomputed for
every class. The algorithm stops when there is not a
significantly change between the µ and Σ previously
calculated.

2.4 Feedback Iterative Method (FIM)

 The goal of the feedback iterative algorithm is to select
the subset of bands that best separates the centroids of a
given number of classes. This is done by creating the
whole possible combinations of m bands from the total of
N, where m is the desire final number of bands and N is
the total number of bands. The covariance matrix and the

328

mean for each class are calculated for each set. These
values can be obtained by using the pixel class
membership of a previous classification. This
classification can be an initial one when the algorithm
is starting or a classifier output on a previous iteration.

.
!)!(

!
mmN

N
m
N

−
=

(5)

 Among all the sets the one with the largest average
distance between its class centroids is selected. The
selected set is the input to the classifier and when it
finishes computing the classified pixels are used again
to select other possible sets. The algorithms stop when
the same set is continuously selected or the algorithm
reaches its maximum iteration number.

3. Implementation Issues

 The algorithm implementations use two different
libraries: ATLAS + CLAPACK for IA32 and HP MLIB
for IA64.

 Automatically Tuned Linear Algebra Software
(ATLAS) [4] focuses on applying empirical techniques
in order to provide portable performance. Currently, it
provides C and Fortran77 interfaces to a portably
efficient BLAS [5] implementation, as well as a few
routines from LAPACK [6]. ATLAS was compiled on
IA32 systems using gcc compiler version 3.3-3 on an
Intel© Xeon™ 2.2GHz machine. The ATLAS version
used was 3.7.3. Most of ATLAS routines only provide a
subset of LAPACK routines, so for the proper use of
these routines CLAPACK [7] should be installed.
CLAPACK is the same Fortran LAPACK library build
using a FORTRAN to C conversion utility called f2c.
fThe entire Fortran 77 LAPACK library is run thought
f2c to obtain C code, and then modified to improve
readability.

 The HP Mathematical LIBrary (HP MLIB) [8] is a
HP based high performance numerical package
optimized for the IA64 and PA-RISC architectures.
This package consists of three packages LAPACK,
VecLIB [9] and SCILIB [10]. VECLIB contains the
complete set of BLAS routines.

 Using these libraries we have a common set of BLAS
routines that could be implemented on the current code
to obtain benchmarks based on optimized libraries. The
original code was modified to replace original code calls
for BLAS routines. The same BLAS routine was used
on both architectures. Pre-compiler flags (#define) were
added on the code so we are able to differentiate the

calls depending on the architecture and the type and
number of parameters parameters. In order to avoid
compiler errors and increase flexibility we have created
two different make-files: Makefile.ia32 and Makefile.ia64.
Depending on which architecture a symbolic link should
be made.

Original
Function

Description BLAS Function

Jacobi() Calculates all
EigenVectors and
EigenValues of a
symmetric matrix

sytrd() – convert a
martix into its
tridiagonal form
stevx() – calculate
eigenvectors and
eigenvalues of a
tridiagonal matrix

matmat() Performs a matrix-
matrix
multiplication

gemm()

vecmatmul() Peforms a vector
matrix
multiplication

gemv()

Table 1. Function replace using BLAS routines

 The codes were run on a Intel© Xeon™ 2.2GHz
machine running Red Hat 8.0 with 1GB of RAM on the
IA32 side and for IA64 we use a HP rx4640 machine with
one IA64 Madison processor 1.5Ghz and 6MB of cache
running Red Hat Advanced Server 2.1 with 1GB of RAM.
On IA64 we used the Intel 8.0 non commercial compiler
and on IA32 we used the gcc 3.3-3 compiler. For code
profiling we used the gprof tool [11].

4. Results and Related Work

4.1 Benchmarks

 One of our main goals in this research besides
exploring the IA64 capabilities was to test the
mathematical libraries available for the Itanium
architecture. So to check these libraries we developed all
the mathematical functions on our own and then ported
the ones with the biggest performances issues. Not
surprisingly the routines with several performance
penalties were the matrix to matrix multiplication,
eigenvector and eigenvalues calculation and vector to
matrix multiplication. In Table 1 we summarize the
functions and also their counterparts on the BLAS library.
People familiar with the BLAS library know that there are
a lot of routines available that could replace our original
functions. These BLAS routines were selected basically
because the matrix used on HSI are in general real
matrices and most of the calculations are done using
symmetric matrices.

329

 In Table 2, we present the execution times obtained
for different versions of the algorithms. The first two
columns show the execution time of the algorithms
using our own mathematical functions. The two
columns of the left show the algorithm after the BLAS
routines were used.

 On the Principal Component Algorithm we can see
an improvement of 50% without any major changes,
just compiling the code. When we integrate BLAS
routines we see a breakthrough of nearly 23 times faster
on both architectures. On the Feedback Iterative
Method we see an improvement of 26% on IA32 and a
lousy 1% on Itanium. Also as the reader can notice
execution on Itanium took almost an hour more to
execute than on IA32 on both algorithm version. So the
algorithm took a performance penalty of 37%. The
story on the Euclidean distance classifier is completely
different. We see an improvement of more than 2
times faster by just compiling the application on IA64.
We also get a boost on performance of more than 4.5
times on IA32 by using BLAS routines and one of 11.7
times on IA64. In the Maximum Likelihood algorithm
we encountered a penalty of 2.3 times in the IA64
executions. When we integrate BLAS to the code we
then see an improvement of 43.8% on IA32 a 93.4% on
IA64.

Algorithm IA32 IA64 IA32
(Optimized)

IA64
(Optimized
)

PCA 1m39s 1m9s 4.13s 3.18s
FIM 2h39

m
3h38
m

2h6m8s 3h36m58s

EUC 5m3s 2m17s 1m5.74s 11.66s
ML 29m8s 1h7m 16m22s 4m22s

Table 2. Algorithms benchmarks before and after
BLAS library replacements.

4.2 Analysis

4.2.1 Principal Component

 From the previous results there is not apparent
performance benefit on the Itanium architecture. For
this to happen we need to further analyze the
algorithms. In Figure 1 we show the four major
components of the PCA. The first block is gathering
the spectral image from a file; since this task is mostly
dependant on the disk I/O we do not cover it. The next
block is the covariance calculation. Inside this block we
get the image matrix and perform some manipulations.
The most computing intensive task of this block is a
matrix multiplication. This matrix multiplication
accounted for more that 80% of the block. It explains
the performance gains when we use BLAS routines.

The last block is also a matrix multiplication.
Consequently only the gemm() routine replacement
basically eliminates the biggest hotspot on block two and
almost eliminate the hotspot on block 4. On both BLAS
implementations we can get similar performance benefits,
so basically both libraries optimized the architectural calls.
Using the same algorithm without any modifications we
can see an improvement on Itanium. We believe this is
mostly due the highest clock speed and some average
usage of the Itanium cache.

Get_Data()

Calc_Cov()

Calc_Eigen()

Mat_Mul()

Figure 1. Principal Component Algorithm block
components

4.2.2 Feedback Iterative Method

 In the FIM algorithm the numbers of combinations
generated increases exponentially depending on the
number of spectral channels and the subset selected. In
Table 3 we show a sample of the combinations generated
depending on the different values using Equation (5).

Parameters
N S

Combinations

220 3 17,505,400
220 5 41,025,655,440
220 7 44,942,628,733,20

0
Table 3. Sample numbers of combinations generated
for the specific parameters (N = number of spectral
bands, s = numbers of elements in the combination)

 A profiling on the FIM code shows that the means
calculation is accounted for 76% of the time on Itanium
and 86% on IA32. It is found that calc_means() function
does not benefits from any of the BLAS routines
implemented. The function goal is basically to get all
pixels from a combination and based on its membership
the mean or centroid for each of the classes is calculated.
For every combination a new set of pixel values will be
evaluated so there is very little opportunity for Itanium

330

cache usage. Although we know why the BLAS
routines implementation on Itanium have very little
impact we still are looking to found the cause in the
differences in performance between IA32 and IA64 on
both implementations. We noticed that calc_means()
took an average of 1409 seconds per call to execute on
Itanium and 323 seconds on IA32. This functions has
several loops implemented with a O(n2) as its biggest
point so the problem resides on the calc _means()
procedure but further analysis is needed to determine
what exactly is the compiler generated code for this
function that leads to this performance problem on
Itanium.

4.2.3 Euclidean Distance Classifier

 The Euclidean distance classifier exhibits the best
performance gains. It is because this algorithm exploits
the Itanium cache benefit. On IA32 the Euclidean()
function (the one in charge of the main distance
calculation) is accounted for the 73% of the execution
time with 47 seconds. On the IA64 the Euclidean
routine is accounted for only 31% of the processing with
a self call of 6.64 seconds. If we check Equation (1) we
can see that the main calculation is an accumulative
value (a multiplication and then an addition to the
previous value). Itanium architecture is optimized for
these types of operations. With its 3 levels of cache
Itanium ranging from 3-9MB of cache in total, Itanium
can outperform all other architectures in this type of
sequential reads. Moreover, all the data for the whole
algorithm can be available on cache for the whole
executions. New distances are calculated using the
same pixel vectors of the original image so there should
be a small amount of cache misses requesting data. We
assume most of the image data is stored on the nearest
cache and then all the operations are executed, but the
procedure is mostly the same for the whole algorithm.

4.2.4 Maximum Likelihood Classifier

 On the Maximum Likelihood Classifier, although we
have the same accumulative effect than on the
Euclidean distance (Equation 2) it is now combined
with a series of matrix manipulations. Moreover since
the covariance is used, we need to calculate it for each
class. On the original implementation the main
function hotspot was the matrix multiplication on the
covariance function. With the integration of the
gemm() BLAS routine the performance benefits are
tremendous. On the other hand we have a similar issue
that with the FIM algorithm. When the code was
compiled on Itanium without any modification, the
performance penalty was prohibited. The matrix
multiplication routine generated by the compiler
apparently had some problems that significantly affect

the execution times. When we link the program with the
BLAS routines then we could really see serious
improvements.

5. Conclusions and Future Work

 On our experience with these and other algorithms
ported to Itanium is that IA64 should provide a boost in
performance in the order of 1.3 to 1.5 percents with just a
compilation. If an algorithm ported to IA64 is not on that
boundary then more aggressive optimizations are needed.
At first we started trying to use compiler flags to help us in
this optimization but all our efforts were unsuccessful.
Our improvement occurs when we start linking our
mathematical functions with the HP MLIB tools. The
linking process was pretty much straight forward and no
major issues were found. After that, the algorithms that
took advantages of the new functions see huge
improvements, but on other algorithms like FIM that did
not use these routines heavily have big performance
impacts.

 The Itanium architecture relies most of its performance
on the compiler interpretation of the code. All
instructions are transformed into bundles of instructions
and these bundles are processed in a parallel fashion
between the different four functional units. The idea is
that all functional units will be executing instructions
simultaneously. But sometimes the compiler can not
generate successful bundles of instructions causing ‘split
issues’, meaning that functional units are stalled waiting
for instructions. This issue can seriously impact the
program performance and it causes programs to run
slower on IA64 than on IA32. Also we need to clarify that
these are very high demanding computing intensive
applications that required specific architectural knowledge
to fully exploit the processor capabilities.

 As next steps, we plan to finish porting other routines
to BLAS. We have identified some routines like matrix
inverse, matrix norms, vector copies and vector maximum
and minimum values that could be used on our
implementations. Moreover, since we consider most of the
Itanium benefits resides on its large amount of cache it
will be interesting to analyze cache misses and hits on all
algorithms and try to generate a correlation among the
execution times.

6. Acknowledgments

 This work has been supported by the Hewlett-Packard
Technology Center at Puerto Rico and the NSF
Engineering Research Center for Subsurface Sensing and
Imaging Systems (CenSSIS).

331

7. References

1. P. Swain an d S. Davis, Remote Sensing: The
quantitative Approach (McGraw-Hill, New York,
1993).

2. S. Mazer and M. Martin, “Image processing
software for imaging spectrometry data analysis”,
Remote Sensi n g of th e En vir on men t. Vol 24 no. 1.
201-210. 1988.

3. J. A. Richards and X. Jia, Remote Sensing Digital
Image Analysis (3rd Edition, Springer-Verlag,
1999)

4. ATLAS: http://math-atlas.sourceforge.net/

5. BLAS: http://www.netlib.org/blas/

6. LAPACK: http://www.netlib.org/lapack/

7. CLAPACK: http://www.netlib.org/clapack/

8. HP MLIB: http://www.hp.com/go/mlib

9. VecLIB:
http://www.nasoftware.co.uk/libraries/veclib.html

10. SCILIB: http://www.netlib.org/scilib/

11. S. Graham, P. Kessler, M. McKusick, “gprof: A
Call Graph Execution Profiler”, Proceedings of the
Symposium on Compiler Construction,, Vol. 17,
No 6, pp. 120-126, June 1982.

332

http://math-atlas.sourceforge.net/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/clapack/
http://www.hp.com/go/mlib
http://www.nasoftware.co.uk/libraries/veclib.html
http://www.netlib.org/scilib/

