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Abstract

When solving time dependent partial di�erential equations on parallel comput�

ers using non�overlapping domain decomposition methods� one often needs numer�

ical boundary conditions on the boundaries between subdomains� These numerical

boundary conditions can signi�cantly a�ect the stability and accuracy of the �nal

algorithm�

In this paper� a stability and accuracy analysis of the existing methods for

generating numerical boundary conditions will be presented� and a new approach

based on explicit predictors and implicit correctors will be used to solve convection�

di�usion equations on parallel computers� with application to aerospace engineer�

ing for the solution of Euler equations in computational �uid dynamics simulations�

Both theoretical analyses and numerical results demonstrate signi�cant improve�

ment in stability and accuracy by using the new approach�
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� Introduction

Convection�di�usion equations in the form of

ut � �ru � r � ��ru�� x � �� t � �� ���

u�x� t� � f�x� t�� x � ��� t � �

u�x� �� � g�x�� x � ��

where � is the spatial domain and �� is the boundary of �	 are widely used in science and
engineering as mathematical models for computational simulations	 such as in oil reservoir
simulations	 analysis of 
ow �eld around airplanes	 transport of solutes in groundwater	
and global weather prediction� In particular	 when � � �	 Equation ��� becomes a pure
convection equation�

For large�scale problems	 particularly those de�ned in two� or three�dimensional spatial
domains	 the computation of solutions may require substantial CPU time� It is therefore
desirable to use multiprocessor parallel computers to calculate solutions� One way to
parallelize an implicit algorithm for solving time dependent PDEs is to use a parallel
linear algebraic equation solver� There are various parallel algorithms for solving linear
algebraic equation systems using multiprocessor computers	 notably the nested dissection
method 
��	 the cyclic reduction method 
��	 and the parallel diagonal dominant method

���� These parallel algorithms either have a higher computational complexity than the
sequential algorithm	 or are applicable only to a special class of matrices	 such as diag�
onally dominant Toeplitz matrices 
�	 ���� For problems involving Neumann boundary
conditions or convection terms	 the coe�cient matrix resulting from discretization of
Equation ��� may not be a diagonally dominant Toeplitz matrix�

Another widely used method for solving time dependent PDEs on parallel computers
is domain decomposition 
��� It dates back to the classical Schwarz alternating algorithm
with overlapping subdomains 
��	 ��� for solving elliptic boundary value problems� Note
that the original motivation for using domain decomposition method was to deal with
complex geometries	 equations that exhibit di�erent behaviors in di�erent regions of the
domain	 and memory restriction for solving large scale problems�

When solving time dependent PDEs with non�overlapping subdomains on parallel
computers	 the domain decomposition method could either be used as a preconditioner for
Krylov type algorithms 
�	 ��	 or as a means to decompose the original domain into subdo�
mains and solve the PDEs de�ned in di�erent subdomains concurrently 
�	 �	 ��	 ��	 ����
When it is used as a preconditioner	 the relevant PDE is discretized over the entire origi�
nal domain to form a large system of algebraic equations	 which is then solved by Krylov
type iterative algorithms� The preconditioning step and the inner products involved in
the solution process often incur a signi�cant amount of communication overhead that
could signi�cantly a�ect the scalability of the solution algorithms�

On the other hand	 if the original domain � is decomposed into a set of non�overlapping
subdomains �k� k � �� � � � �M 	 it would be ideal that the PDEs de�ned in di�erent
subdomains could be solved on di�erent processors concurrently� This often requires
numerical boundary conditions at the boundaries between subdomains� These numerical
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boundary conditions are not part of the original mathematical model and the physical
problem� One way to generate those numerical boundary conditions is to use the solution
values from the previous time step tn to calculate the solutions at tn�� 
�	 ��	 ���� This
is often referred to as time lagging �TL�� The other way to generate numerical boundary
conditions is to use an explicit algorithm to calculate the solutions at the boundaries
between subdomains	 using the solutions from the previous time step	 and then solve the
PDEs de�ned on di�erent subdomains concurrently using an implicit method 
�	 ���� This
is referred to as the explicit predictor �EP� method in this paper� In an earlier paper

���	 Zhu et al� showed	 in the context of the numerical solution of one�dimensional
linear heat equation	 that the stability and accuracy of the solution algorithm can be
signi�cantly a�ected by the TL and EP methods� A new method based on explicit
predictor and implicit corrector �EPIC� for generating numerical boundary conditions
was discussed in 
���� Preliminary numerical experiments with a one�dimensional linear
heat equation have demonstrated signi�cant improvement in stability and accuracy using
this new method�

In this paper	 a more systematic stability analysis for the TL	 EP	 and EPIC meth�
ods will be presented for solving more general equations	 i� e� the convection�di�usion
equations� Practical application of the methods to nonlinear system of Euler equations
for the 
ow �eld calculation of an airfoil on parallel computers will also be discussed�

The next section is devoted to the analysis of the TL and EP methods� The EPIC
method will be discussed in Section �� Parallel implementation of the algorithm and
numerical experiment will be presented in Section �� Application to the solution of
nonlinear Euler equations will be given in Section �	 followed by the conclusions in Section
��

� Analysis of the TL and EP Methods

For simplicity of the discussion	 the following one�dimensional linear model with con�
stant coe�cients and homogeneous boundary conditions is used here to analyze di�erent
methods for generating numerical boundary conditions�

ut � �ux � �uxx� � � x � �� � � t � T�

u��� t� � u��� t� � �� t � ��

u�x� �� � g�x�� � � x � ��

���

The results are applicable to higher dimensional models with nonhomogeneous boundary
conditions�

As shown in Fig� �	 the original spatial domain � � 
�� �� is discretized by a set
of grid points xi� i � �� � � � � L� uniformly distributed with �x � xi � xi�� � �

L
� The

temporal domain 
�� T � is discretized by a set of discrete time steps tn� n � �� � � � � N�
with �t � tn � tn�� � T

N
� The numerical solution u�xi� tn� is denoted by uni 	 and the

original spatial domain is decomposed into M subdomains �k� k � �� � � � �M 	 where
the two end points of subdomain �k are denoted as rk�� and rk	 respectively� Each
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subdomain �k has m�� points including the two end points rk�� and rk� Since only two
physical boundary conditions are available at the points r� and rM 	 numerical boundary
conditions are needed at points rk	 k � �� � � � �M � �	 if the PDEs de�ned in di�erent
subdomains are to be solved concurrently using an implicit algorithm�

Various �nite di�erence algorithms are available for discretizing Eq� ���� The forward
time central di�erence �FTCS� scheme is given by

un��i � uni
�t

� �
uni�� � uni��

��x
� �

uni�� � �uni � uni��
�x�

�

i � �� ���� L� �� n � �� ���� N � ��

���

or equivalently

un��i � �r �
R

�
�uni�� � ��� �r�uni � �r �

R

�
�uni���

i � �� ���� L� �� n � �� ���� N � ��
���

where R � � �t
�x

and r � � �t
�x�

�
The stability condition for this FTCS scheme is given by 
���

R�

�
� r �

�

�
� ���

When the physical process is convection dominant	 the stability condition in ��� may
be di�cult to satisfy and oscillations could occur in the numerical solutions obtained
with the FTCS scheme� In this case	 it is usually better to use upwind di�erence for
the convective term to improve stability and reduce oscillations� If � � �	 the upwind
scheme is

un��i � uni
�t

� �
uni�� � uni

�x
� �

uni�� � �uni � uni��
�x�

�

i � �� ���� L� �� n � �� ���� N � ��
���

or equivalently

un��i � runi�� � �� �R� �r�uni � �r � R�uni���

i � �� ���� L� �� n � �� ���� N � ��
���

Otherwise	 if � � � then the upwind scheme is

un��i � uni
�t

� �
uni � uni��

�x
� �

uni�� � �uni � uni��
�x�

�

i � �� ���� L� �� n � �� ���� N � ��

���

or equivalently

un��i � �r �R�uni�� � ��� R� �r�uni � runi���

i � �� ���� L� �� n � �� ���� N � ��
���
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For implicit schemes	 the BTCS scheme is given by

un��i � uni
�t

� �
un��i�� � un��i��

��x
� �

un��i�� � �un��i � un��i��

�x�
�

i � �� ���� L� �� n � �� ���� N � ��

����

or equivalently

� �r �
R

�
�un��i�� � �� � �r�un��i � �r �

R

�
�un��i�� � uni �

i � �� ���� L� �� n � �� ���� N � ��
����

The implicit version of the upwind schemes is

� run��i�� � ��� R � �r�un��i � �r � R�un��i�� � uni �

i � �� ���� L� �� n � �� ���� N � �
����

for � � �	 and

� �r �R�un��i�� � �� �R � �r�un��i � run��i�� � uni �

i � �� ���� L� �� n � �� ���� N � ��
����

for � � ��

��� Time�Lagging �TL� Method

For the TL method	 the boundary conditions between subdomains are generated by
setting

�un��rk��
� unrk���

�un��rk
� unrk � k � �� � � � �M � ��

����

Note that the left side of subdomain �k� k � �� � � � �M 	 is extended to rk���� in order to
advance the solution value at the point rk�� to the next time level� An implicit scheme
is then used to solve the PDE in each subdomain concurrently� This process can be
illustrated using a simple example shown in Fig� �	 in which � � fxi� i � �� � � � � �g�
There are two subdomains �� � fxi� i � �� � � � � �g and �� � fxi� i � �� � � � � �g�

The matrix representation of the solution algorithm given in ���� and ���� can be
written as
�
������������

a� a�
a� a� a�

a� a�
a� a�
a� a� a�

a� a� a�
a� a�

�
������������

�
������������

u�
u�
u�
u�
u�
u�
u	

�
������������

n��

�

�
������������

�
�

� �a�
�a� �

�
�

�

�
������������

�
������������

u�
u�
u�
u�
u�
u�
u	

�
������������

n

����
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where the coe�cients a�� a� and a� depend on the discretization method used� For exam�
ple	 with the BTCS algorithm	 we have a� � �� �r	 a� � ��r � R

�
�	 and a� � ��r � R

�
��

For a general domain with � � fxi� i � �� � � � � Lg and M subdomains with equal
number of grid points	 the matrix representation of the algorithm is given by

�
�������

A
�

A

� � �

A

A

�
�������

�
�������

u�

u�
���

uM��

uM

�
�������

n��

�

�
�������

I
�

B
�

�

B
�

� I B�

� � �
� � �

� � �

B� I B�

B� I

�
�������

�
�������

u�

u�
���

uM��

uM

�
�������

n

�

����

The vectors uk� k � �� � � � �M 	 represent the solution vector in the interior of the k�th
subdomain �k plus the solution at the left end point urk��	 except for u� that includes

only the solutions at the interior points of ��� The block matrices A
�

and A are of the
form

�
���������

a� a� � � � � �

a� a� a�
� � �

���

�
� � � � � � � � � �

���
� � � � � � � � � a�

� � � � � a� a�

�
���������
� ����

The order of A
�

is m� �	 and that of A is m� �� Each subdomain �k has m� � points
including the boundary points rk�� and rk� Both I

�

and I are identity matrices with the
same dimensions as that of A

�

and A	 respectively� The elements in matrices B�	 B
�

�	 B�

and B
�

� are all zero	 except for the element �a� at the lower left corner of B� and B
�

�	
and the element �a� at the upper right corner of B� and B

�

��
Since the standard Von Neumann stability analysis is based on Fourier transform	 it

can only be used to analyze problems with periodic boundary conditions� To consider
the e�ect of di�erent boundary conditions on the stability of the solution algorithms	
matrix analysis is used here to analyze various numerical boundary conditions�

The compact form of the matrix representation of the TL method in ���� is

Cun�� � Fun� ����

It is well�known that the necessary condition for stability is ��C��F � � maxj�j j � �� j �
�� � � � � L� �	 where �j�s are the eigenvalues of matrix C��F 
��	 ���� Since it is di�cult
to obtain an analytic expression of the eigenvalues for this matrix	 the software package
MATLAB has been used to calculate the magnitude of the largest eigenvalues�

Fig� � shows the contour plot of ��C��F � vs� �R� r� with L � ���	 M � ��	 ����� �
R � ���	 and � � r � ��� for the TL method with the BTCS scheme in ����� We refer to
this method as TL method with central di�erence� Note that the maximum value of the
contour lines is ���	 showing that the necessary condition for stability is satis�ed� Actual
numerical experiments also demonstrate that the computation is stable�
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Fig� � shows the contour plot of ��C��F � vs� �R� r� with L � ���	 M � ��	 ����� �
R � �	 and � � r � ���	 for the TL method using the upwind scheme in ���� with � � ��
In this case a� � ��R��r	 a� � ��r�R�	 and a� � �r� The maximum spectral radius
in the �gure is ������

The e�ect of the number of subdomains M on the spectral radius is demonstrated
in Fig� �	 with � � M � ���	 L � ���	 R � ����	 and r � ���� for the TL method
with central and upwind schemes� Even though the spectral radius increases as the
number of subdomains increases	 it is still less than � with ��� subdomains� In practical
computations	 it is unlikely that a domain with only ��� grid points will be decomposed
into ��� subdomains� Each subdomain will have a lot more grid points	 which helps keep
the spectral radius less than ��

In all cases	 it is shown that the necessary condition for stability is satis�ed� Although
this is not a rigorous mathematical proof of ��C��F � � � for all cases	 it does demonstrate
��C��F � � � for practical purpose	 since the cases cover a wide range of values of r	 R	
and M �

To estimate the additional temporal error caused by the the numerical boundary
condition from the TL method	 we substitute the Taylor series expansion into the �nite
di�erence formula ���� with time lagging at the point rk � ��

�
un��rk��

� unrk��

�t

�
� �

�
unrk � un��rk��

��x

�
� �

�
unrk � �un��rk��

� un��rk��

�x�

�
�

�
un��rk��

� unrk��

�t

�
� �

�
unrk � un��rk

� un��rk
� un��rk��

��x

�

��
�
unrk � un��rk

� un��rk
� �un��rk��

� un��rk��

�x�

�
�

�
un��rk��

� unrk��

�t

�
� �

�
unrk � un��rk

��x

�
� �

�
un��rk

� un��rk��

��x

�

��
�
unrk � un��rk

�x�

�
� �

�
un��rk

� �un��rk��
� un��rk��

�x�

�
�

�
un��t �

��t�

�
un��tt � � � �

�
rk��

�
�

���x�

�
� ��t�un��t �

��t��

�
un��tt � � � �

�
rk

�
�

���x�

�
���x�un��x �

��x��

�
un��xxx � � � �

�
rk��

�
�

��x��

�
� ��t�un��t �

��t��

�
un��tt � � � �

�
rk

�
�

��x��

�
��x��un��xx �

��x��

��
un��xxxx � � � �

�
rk��

�

�



Since we have �
un��t � �un��x � �un��xx

�
rk��

� �� ����

the truncation error is �
�

��t�

�
un��tt � � � �

�
rk��

�
�
�

���t�

���x�
un��t �

���t��

���x�
un��tt � � � �

�
rk

�
�
���x��

�
un��xxx � � � �

�
rk��

�
�
�
���t�

��x��
un��t �

���t��

��t��
un��tt � � � �

�
rk

�
�
���x��

��
un��xxxx � � � �

�
rk��

�

����

in which the additional truncation error caused by time lagging is represented by the
terms in the second and the fourth pairs of brackets� If � �� �	 the additional error is
dominated by the term �t

�x�
� This indicates that the TL method causes an additional

truncation error of order O
 �t
�x�

� at the boundaries between subdomains� Notice that if
� � �	 that is the PDE is a pure convective equation	 then the additional truncation
error is dominated by the term �t

�x
at the boundary�

By using the same procedure	 it can be shown that the additional truncation errors
of the TL method with upwind di�erence is also dominated by the term �t

�x�
for the

convection�di�usion equation	 and by the term �t
�x

for the pure convection equation�
Gustafsson 
��� has proved that if the order of accuracy of the di�erence equation ap�

proximating a given hyerbolic partial di�erential equation is p � �	 the order of accuracy
of the boundary conditions is p� �	 and the scheme is stable	 then the computation will
converge with order m� This result can be interpreted as that the truncation error for
the solution inside the spatial domain is one order higher than that at the boundaries�
Thus	 since the additional error caused by the TL method applied to the pure convection
equation is O
�t

�x
� at the boundaries	 the additional error inside the spatial domain is of

the order of O
�t
�x

�x� � O
�t��
Although Gustafsson�s proof applies only to pure convection equations	 it will be

demonstrated later in our numerical experiment that this result also holds for parabolic
equations� Since the additional error caused by the TL method for the convection�
di�usion equation at the boundaries is of order O
 �t

�x�
�	 the additional error inside the

domain is of order O
�t
�x

�� This explains why the maximum error for the TL method in
Table � remains roughly a constant when the grid is re�ned with �x proportional to �t�

��� Explicit�Predictor �EP� Method

The matrix representation of the EP method for a one�dimensional domain with uni�
formly distributed grid points xi	 i � �� � � � � L	 and M subdomains with equal number
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of grid points can be written as

�
������������

A v

�

w A v

�
� � �

w A v

�

w A

�
������������

�
������������

u�

ur�
u�

ur�
���

uM��

urM��
uM

�
������������

n��

�

�
������������

I

y � z

I

y � z

� � �
� � �

� � �

I

y � z

I

�
������������

�
������������

u�

ur�
u�

ur�
���

uM��

urM��
uM

�
������������

n

����

where A is a matrix of order m� � with similar structure as that in ����	 I is an identity
matrix of orderm��	 uk� k � �� � � � �M� represent the solution vector in the interior of the
k�th subdomain �k without including the two end points urk�� and urk 	 the parameters
a�	 a�	 a� and 	 depend on the discretization methods used	 and the vectors v� w� y� z are
de�ned as

v � f�� � � � � �� a�g
T � w � fa�� �� � � � � �g

T � y � �vT � z � �wT �

The compact form of ���� is

Cun�� � Fun� ����

For the EP method with central di�erence for both the convection and di�usion term	
the algorithm can be written as

� Predictor

�un��rk
� �r �

R

�
�unrk�� � ��� �r�unrk � �r �

R

�
�unrk��� k � �� � � � �M � �� ����

� Calculate solution in each subdomain
�
���������

a� a� � � � � �

a� a� a�
� � �

���

�
� � �

� � �
� � � �

���
� � �

� � �
� � � a�

� � � � � a� a�

�
���������

�
��������

un��rk����

un��rk����
���

un��rk��

un��rk��

�
��������
�

�
��������

unrk���� � a��u
n��
rk��

unrk����
���

unrk��
unrk�� � a��u

n��
rk

�
��������
� ����

k � �� � � � �M�

which can be assembled in the form of system ���� with a� � � � �r	 a� � ��r � R
�
�	

a� � ��r � R
�
�	 and 	 � �� �r�

Fig� � shows the contour plot of ��C��F � vs� �R� r� with L � ���	 and M � �� for
the EP method with central di�erence� In this case �� � R � � and � � r � �� It is
clear that the method is only conditionally stable� For example	 when R � �	 the scheme
is unstable�
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Similarly	 Fig� � shows that the EP method with upwind di�erence is also only con�
ditionally stable� In this case � � �	 L � ���	 M � ��	 �� � R � �	 and � � r � ��
The method is a combination of scheme ��� as a predictor and scheme ���� as the algo�
rithm for the interior points in all subdomains	 which corresponds to a� � � � R � �r	
a� � ��r � R�	 a� � �r	 and 	 � � �R� �r�

The additional truncation error caused by the numerical boundary condition from the
EP method can be analyzed in a similar way to what we did for the TL method� With
central di�erence for both the convection and di�usion terms	 we have

�
un��rk��

� unrk��

�t

�
� �

� �un��rk
� un��rk��

��x

�
� �

� �un��rk
� �un��rk��

� un��rk��

�x�

�
�

�
un��rk��

� unrk��

�t

�
� �

� �un��rk
� un��rk

� un��rk
� un��rk��

��x

�

� �

� �un��rk
� un��rk

� un��rk
� �un��rk�� � un��rk��

�x�

�
�

�
un��rk�� � unrk��

�t

�
� �

� �un��rk
� un��rk

��x

�
� �

�
un��rk

� un��rk��

��x

�

� �

� �un��rk
� un��rk

�x�

�
� �

�
un��rk

� �un��rk��
� un��rk��

�x�

�
�

����

Note that we have

�un��rk
� urk �

���t�

���x�

�
unrk�� � unrk��

�
�
���t�

��x��

�
unrk�� � �unrk � unrk��

�

� un��rk
�O��t�� �O��t�x���

����

Substituting ���� into ���� and expanding by Taylor series as we did for the TL method	
we found that the additional error caused by the EP method with central di�erence is
dominated by the term of order O
�t

�

�x�
� at the boundaries� If � � � then the additional

error at the boundaries is reduced to O
�t
�

�x
�� The same conclusions also apply to the EP

method with upwind di�erence�
Similar to the discussion for the TL method	 we can show	 based on Gustafsson�s proof

and numerical experiment	 that the additional error in the �nal solution caused by the
EP method is of order O
�t�� for the pure convection equation with � � �� For the
convection�di�usion equations	 numerical experiments have shown that the additional

error in the �nal solution is of order O
 
�t�
�


�x�
�� In particular	 if the grid size �t and �x is

re�ned proportionally	 i� e� �t � c�x	 then the error is of order O��t�	 which explains
why the results from the EP method in our numerical experiment is more accurate than
the TL method when it is in the stable region�

� Explicit�Predictor Implicit�Corrector �EPIC�

Based on the analysis of the TL and EP methods	 it is clear that a method that com�
bines the advantages of both the TL �stability� and EP �accuracy� methods would be

��



very desirable for solving convection�di�usion equations on parallel computers� An ap�
proach based on explicit predictor and implicit corrector �EPIC� was �rst proposed in

��� for solving linear heat equations	 with some preliminary numerical results� Although
the concept of explicit predictor and implicit corrector has long been used to develop
numerical algorithms for solving nonlinear ODEs	 it has never been used to generate nu�
merical boundary conditions for solving PDEs using domain decomposition algorithms�
We will extend this method and the analysis here to the solution of convection�di�usion
equations on parallel computers� The following are the main steps of the EPIC method
with central di�erence for both the convection and di�usion terms�

� Use an explicit predictor	 such as the FTCS algorithm	 to generate the numerical
boundary conditions at the end points rk	 k � �� � � � �M � �� of all subdomains�

�un��rk
� �r �R�unrk�� � ��� �r�unrk � �r � R�unrk��� k � �� ����M � ��

����

� Solve the systems of equations in all subdomains �k	 k � �� � � � �M��� concurrently�

�
���������
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rk��

unrk����
���
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unrk�� � a��u

n��
rk

�
��������
�

����

� Update the numerical boundary conditions at points rk	 k � �� � � � �M � �� using
an implicit corrector	 such as the BTCS algorithm�

un��rk
�

�r �R�

�� � �r�
unrk�� �

�

�� � �r�
unrk �

�r �R�

�� � �r�
un��rk��

� ����

The matrix representation of the �rst two steps for a general domain � � fxi� i �
�� � � � � Lg having M subdomains with equal number of m� � grid points will be similar
to those as given in ����	 that is
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The vector �un�� represents the intermediate solution obtained without the corrector step�
The matrix representation of the corrector step is given by
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�u�
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�uM

�
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n��
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or

u
n�� � Eun �G�un��� ����

where O is the zero matrix	 �v	 �w and �	 depend on the discretization method used for the
corrector� For the corrector given in ����	 we have �	 � �

���r
and the vectors �v and �w of

dimension m� � are de�ned as

�v � f�� � � � � ��
r �R

� � �r
g� �w � f

r � R

� � �r
� �� � � � � �g� k � �� ����M � ��

The �nal equation that connects un with un�� is then

u
n�� � Eun �G�un�� � �E �GC��F �un� ����

and the necessary condition for stability is ��E �GC��F � � ��
Fig� � shows the contour plot of ��E � GC��F � vs� �R� r� with ����� � R � ���	

� � r � ���	 L � ���	 and M � ��� Unlike the case for the pure heat equation discussed
in 
���	 the EPIC method based on central di�erence for both the convection and di�usion
terms is only conditionally stable� It is clear from Fig� � that the value of ��E�GC��F �
becomes much larger than � when jRj is close to ����

Fig� � shows	 on the other hand	 much better stability of the EPIC method using
upwind di�erence for the convection term	 with � � �	 ����� � R � �	 � � r � ���	
L � ���	 and M � ��� In all cases	 the spectral radiums is less than ��

The analysis of the additional error caused by the numerical boundary condition from
the EPIC method is similar to that of the EP method	 since the �rst two steps in the

��



EPIC method is the same as the EP method and the corrector step does not introduce
any additional truncation error to the scheme� Thus	 the EPIC method with either
central di�erence for both the convection and di�usion terms	 or upwind di�erence for
the convection term causes a truncation error of order O
�t

�

�x�
� at the boundaries for

� �� �� For the pure convection equation with � � �	 the additional error is of order
O
�t

�x
�� The accuracy of the solution in the interior of the subdomain is O
�t�� for � � �

and O
�t
�

�x
� for � �� �� In particular	 if the grid size �t and �x are re�ned proportionally	

the accuracy is O
�t� for the convection di�usion equation with � �� ��

� Parallel Implementation and Numerical Experi�

ment

The EPIC method is highly parallel� The message passing standard MPI 
��� is used in
the code implementation to ensure maximum portability to a wide range of architectures	
including both distributed and shared memory parallel computers	 as well as clusters of
workstations and personal computers�

For the example discussed in this paper	 the processors are con�gured as a one�
dimensional chain� The number of processors equals the number of subdomains	 with
each processor assigned to one subdomain�

In the �rst step of the computation	 each processor calculates the numerical boundary
condition�s� needed for its subdomain using an explicit method	 such as ���� Note that
the �rst and the last processor only need to calculate one numerical boundary condi�
tion	 while other processors need to calculate two numerical boundary conditions� These
computations can be done concurrently on all processors�

In the second step	 each processor forms the system of linear algebraic equations similar
to that in ���� using the numerical boundary conditions calculated at the �rst step	 and
then solves the system of equations� These computations can also be done concurrently
on all processors�

After the solutions have been calculated	 each processor must send to and receive
from its neighboring processors the solutions at the points next to the end points of the
subdomain� For the processor holding subdomain �k with the end points rk�� and rk	 it
must send the calculated solutions at rk���� and rk�� to the left and right neighboring
processors	 respectively	 and receive the newly calculated solutions at the points rk��� �
and rk � � from the left and right neighboring processors	 respectively� Note that the
�rst and the last processors on the chain only need to communicate with one neighboring
processor� This is the only communication step involved in the EPIC method�

In the last step of the computation	 each processor corrects the numerical boundary
condition�s� at the end of its subdomain using an implicit method	 such as ����� This
can again be done in parallel�

The pseudo�code of the EPIC method for the p�th processor is given below�

Initialization

Read input data

��



Do n � �� ���� N � � �Loop over time steps�

�� Do k � �� ����M � � �Loop over subdomain boundary points�

If rk is one of the two end points of the

subdomain assigned to the p�th processor� then

calculate un��rk
using an explicit predictor

End do

�� Do k � �� ����M �Loop over subdomains�

If �k is assigned to the p�th processor� then

� Form the system of equations for �k

� Solve the system of equations

End do

�� Do k � �� ����M � � �Loop over subdomain boundary points�

If rk is the left end point of the subdomain

assigned to the p�th processor� then send un��rk��

to and receive un��rk��
from the left neighboring

processor� Otherwise� if rk is the right end

point of the subdomain assigned to the p�th

processor� then send un��rk�� to and receive un��rk��

from the right neighboring processor�
End do

�� Do k � �� ����M � � �Loop over subdomain boundary points�

If rk is one of the two end points of the

subdomain assigned to the p�th processor� then

update un��rk
using an implicit corrector

End do

End do

It is obvious from the above algorithm that the computations in step �	 �	 and � on
di�erent processors are completely independent to each other� Additionally	 the inter�
processor communications in step � can be grouped into pairs	 which allow di�erent pairs
to exchange solutions concurrently	 as shown in Fig� ���

The following equation is used in our numerical experiment�

ut � ux �
�


�
uxx� � � x � �� t � ��

u�x� �� � sin�
x�� x � 
�� ���

u��� t� � �e�tsin�
t�� t � ��

u��� t� � e�tsin�
��� t��� t � ��

����

with an exact solution of u��x� t� � e�tsin�
�x� t���
Four di�erent algorithms are used to calculate numerical solutions� The BTUS method

refers to the use of the implicit algorithm ���� without domain decomposition� There
is no need for numerical boundary condition in this case� TL	 EP	 and EPIC refer to

��



the use of time lagging	 explicit predictor	 and explicit predictor and implicit corrector
method	 respectively	 to generate a numerical boundary condition at the middle point of
the domain �	 which is decomposed into two subdomains�

Table � shows the maximum errors of the solutions obtained using the BTUS	 TL	 EP
and EPIC methods� Note that in this particular case	 the errors from all methods are
similar	 with TL method being slightly more inaccurate� This is because the additional
error terms caused by the numerical boundary conditions depend on the time derivative
of the solution	 which approaches zero as time t goes to in�nity� At t � ����	 the solution
can be considered as having reached steady state within machine accuracy� Therefore	
the additional errors caused by the numerical boundary conditions are negligible	 and all
methods appear to be reasonably accurate with similar spatial accuracy�

Table � has similar contents as those in Table �	 except that the solution is calculated
to the time level of T � ���� It now appears that the EP method	 with similar errors as
those from the BTUS algorithm	 is more accurate than the TL method� However	 the
results from Table �	 also calculated to T � ��� using �t � �x	 shows that both EP and
TL fail to deliver solutions with similar accuracy as those from the BTUS algorithm� The
errors from the TL method roughly remain at a constant level as the grid size �t and
�x are re�ned proportionally	 while that from the EP method indicate that it has lost
stability� The results from the EPIC method	 on the other hand	 have similar accuracy
as that from the BTUS method applied to the entire domain without decomposition�

Table �� Maximum errors� �x� � �t	 T � ����	 M � �	 CFL � �x�

�x BTUS TL EP EPIC

������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���

Fig� �� shows that the error from the EPIC method with upwind di�erence for the
convection term does not increase as the number of subdomains increases� In this par�
ticular case	 we have �x � �����	 �t � ������ and the numerical solution is advanced
to T � ���� Similar results can be obtained for the cases when the convection term is
discretized by the central �nite di�erence scheme�

��



Table �� Maximum errors� ��x�� � �t	 T � ���	 M � �	 CFL � �x�

�t BTUS TL EP EPIC

������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���
������ �����e��� �����e��� �����e��� �����e���

Table �� Maximum errors� �x � �t	 T � ���	 M � �	 CFL � ����

�x BTUS TL EP EPIC

������ �����e�� �����e�� �����e�� �����e��
������ �����e�� �����e�� �����e�� �����e��
������ �����e�� �����e�� �����e��� �����e��
������ �����e�� �����e�� � �����e��
������ �����e�� �����e�� � �����e��
������ �����e�� �����e�� � �����e��
������ �����e�� �����e�� � �����e��
������ �����e�� �����e�� � �����e��

� Application to Euler Equations

In this section	 we discuss the application of the EPIC method to the solution of the
Euler equations in the 
ow �eld calculation around an airfoil� The two�dimensional
Euler equations expressed in Cartesian coordinates and conservation form are given by

� �Q

�t
�
� �E

�x
�
� �F

�y
� �� ����

where

�Q �

�
����

�

�u

�v

e

�
���� � �E �

�
����

�u

�u� � p

�uv

u�e� p�

�
���� � �F �

�
����

�v

�uv

�v� � p

v�e� p�

�
���� � ����

with the equation of state given by

p � �� � ��fe�
p

�
�u� � v��g� ����
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where � is the mass density	 u and v are the velocity components in the x and y directions	
respectively	 e is the total speci�c energy of the 
uid	 p is the pressure	 and � is the ratio
of speci�c heats�

For complex geometry	 this system of equations need to be transformed using a general
body��tted curvelinear coordinate systems�

� � ��x� y� t��


 � 
�x� y� t��

� � t�

����

The transformed Euler equations can then be written as

�Q

��
�
�E

��
�
�F

�

� �� ����

where

Q � J�� �Q�

E � J����x �E � �y �F ��

F � J���
x �E � 
y �F ��

����

The Jacobian J of the transformation is given by

J � �x
y � �y
x� ����

and the metric terms are

�x � y�J� 
x � �y�J�

�y � �x�J� 
y � x�J�
����

The algorithm applied to the entire domain without decomposition is an implicit �nite
volume scheme that is �rst order accurate in time and up to third order accurate in space
using Roe�s approximate Riemann solver 
���� The original sequential code was provided
to the authors by the Computational Fluid Dynamics Laboratory at Mississippi State
University�

For parallel processing	 the computational domain was decomposed along the � dimen�
sion� All processors read the same input �les concurrently to obtain grid data and initial
conditions� Each processor performs the calculations on assigned subdomains	 and the
partial solutions from di�erent processors are collected and assembled into an external
�le by a master processor�

Since the computational domain is decomposed only in the ��direction	 the loops in
the 
�direction in the original code are not a�ected� Thus	 only the indices corresponding
to the ��direction need to be modi�ed to distribute computations in di�erent subdomains
to di�erent processors� Interprocessor communication between processors is carried out
using the MPI standard library 
��� to ensure maximum portability�

In this application	 the MacCormack scheme 
��� is used for the predictor step� The
Euler solver based on the Roe�s scheme 
��� is used to calculate solutions in all subdomains

��



concurrently	 and to update the boundary data between subdomains� Fig� �� shows the

ow chart of the computational process described here�

In order to demonstrate applicability	 accuracy	 and performance of the EPIC method
for solving Euler equations	 a series of test cases for transonic 
ow calculation around a
NACA���� airfoil were carried out� Fig� �� shows the grid used for these calculations	
which is a ���� �� C�grid� Fig� �� illustrates the decomposition of the original grid into
four subdomains�

The steady state calculations are for the NACA���� airfoil at Mach number M� �
���� and angle of attack � � ���	 characterized by the presence of a strong shock on the
upper surface of the airfoil and a weaker	 but signi�cant	 shock on the lower surface� The
numerical results are compared with the experimental data in the AGARD Report 
����
Since the EP method su�ers from a severe stability restriction in this application	 only the
results from three methods are compared with the experimental data� �� Single domain
compuation without decomposition	 �� TL method with domain decomposition	 and ��
EPIC method with domain decomposition� Fig� �� shows the pressure distributions
obtained after ���� local time steps using CFL��� from all three methods	 as well as
the experimental data from the AGARD report� Four subdomains were used for the TL
and EPIC methods� Note that the results from all three methods are very close to the
experimental data	 which is not surprising based on the previous analysis�

The unsteady calculations correspond to the 
ow around the NACA���� airfoil pitch�
ing about the quarter chord point 
��� The movement of the airfoil is prescribed such
that the angle of attack varies sinusoidally according to the following relation

��t� � �m � �� sin�M�kt�� ����

where �m is the mean angle of attack	 �� is the amplitude of the unsteady angle of attack	
and k is the reduced frequency de�ned as

k �
wc

V�
� ����

where w is the frequency	 c is the chord length	 and V� is the freestream velocity� In this
test case	 the NACA���� airfoil is assumed to be pitching at M� � �����	 k � ������	
�m � �����	 and �� � ����� The numerical results are compared with the experimental
data by Landon 
����

The unsteady calculations were started from a converged steady state solution and
afterward the CFL number is kept at ���� during the simulation� Figures �� and ��
show the pressure distribution for di�erent angles of attack� Eight subdomains are used
in the computation for the TL and EPIC methods� It is clear from �gures �� and �� that
the pressure distributions obtained using the EPIC method matches very well with those
obtained using the Roe�s approximate Riemann solver without domain decomposition	
as well as the experimental data� The TL method	 on the other hand	 produces a
considerable error in shock locations for both angles of attack�

The numerical results in these test cases show that both the TL and EPIC method are
acceptable for the steady state computations� However	 for unsteady state calculations	

��



the EPIC method yields signi�cantly more accurate solutions when domain decomposi�
tion is used�

Fig� �� shows the speedup for the calculation of steady state solution using the TL
and EPIC methods� The computations were carried out on an SGI Power Challenge XL
parallel computer with �� processors� It is clear from the �gure that both methods are
highly scalable with almost ideal speedup	 which can be maintained on more procesors
by increasing the problem size�

� Conclusion

Both the TL and the EP methods	 in particular the TL method	 have been widely used in
solving time dependent PDEs combined with domain decomposition or multiblock grids�
Detailed stability and accuracy analyses in this paper show that	 for convection�di�usion
equations	 the TL algorithm is stable	 but in general reduces accuracy for calculating
unsteady �transient� solutions� On the other hand	 the EP method is accurate	 but only
conditionally stable� The EPIC method using upwind �nite di�erence for the convection
term combines the advantages of both the TL �stability� and EP �accuracy� methods�
Unlike the case for pure di�usion equations	 the EPIC method using central di�erence
for both the convection and di�usion terms is only conditionally stable�

Application to the solution of nonlinear system of Euler equations in 
ow simulation of
an airfoil shows that the analysis and conclusion drawn from the one�dimensional linear
model equations about the TL	 EP	 and EPIC methods is also applicable to systems of
higher dimensional nonlinear equations� Numerical results demonstrate that the EPIC
method is as stable and scalable as the TL method	 and is more accurate than the TL
method for calculating unsteady solutions on parallel computers�
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Figure �� The original domain � is decomposed into M subdomains �k� k � �� � � � �M�
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Figure �� Time�lagging domain decomposition�
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Figure ��� A ���� �� grid for the NACA���� airfoil�
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Figure ��� NACA ���� unsteady pressure distribution� � � �����
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