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Abstract. This paper describes an object-oriented framework for solving 
computational fluid dynamics problems on parallel computers. The design and 
components of the framework are discussed related to design patterns methodology. 
The proposed framework offers higher-level programming abstractions for 
parallelization and improves the overall efficiency of implementation. 
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1. Introduction 
 
The rapid development of parallel and distributed systems, numerical algorithms, 

and high-speed data networks has resulted in dramatically increased computational 
power and efficiency. As a result, Computational Fluid Dynamics (CFD) has emerged 
as an essential analysis tool applied extensively in analyzing fluid mechanics, heat 
and mass transfer, hydrodynamics, atmospheric sciences, solid mechanics, water 
quality, and transport problems. Thus in the CFD process, the partial differential 
equations (PDEs), which govern the problem of interest, are solved using numerical 
methods on high performance parallel computers [1, 2, 3]. One of the challenges in 
this arena is creating a flexible and open development environment that help reduce 
the high cost of implementing parallel codes as comparing to the traditional approach 
in which the application programmer handles all the implementation details. From the 
implementation point of view, modern programming languages offer powerful tools 
for flexibility, such as the inheritance of object-oriented programming. The numerical 
approach however should be flexible as well. Consequently, flexible domain 
decomposition techniques need to be implemented, without compromising the 
accuracy of the algorithms [4]. In addition, efficient management strategies are 
needed to deal with all the software components. 

 
We propose a high-level parallelization of CFD codes through an extensive use of 

object-oriented programming techniques. A modular implementation of mathematical 
abstractions, which is a direct advantage of object-oriented programming, allows for 
the generalization of computational kernels, which are reusable in many simulation 
applications. This approach makes it possible to hide computational details when it is 
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needed as well as produce simulators with unified generic interfaces. In this paper, we 
describe our experience in building an object-oriented framework for parallel flow 
simulations. The description of the framework is presented with emphasis on design 
patterns methodology [5].  

 
Design patterns provides a high level perspective on both the problem and the 

process of design and object orientation [6]. A pattern describes a core solution of a 
problem that occurs frequently in an environment. There are three types of patterns: 
Creational, structural and behavioral patterns [7]. Creational patterns create objects 
rather than instantiate objects directly. Examples of such patterns are builder, factory, 
prototype, and singleton patterns. Structural patterns help compose groups of objects 
into large structures such as complex user interfaces. Representatives of these patterns 
are adapter, bridge, composite, and proxy. Behavioral patterns, in turn, help define 
the communication between objects and how the flow is controlled in a complex 
system. Examples of such patterns are interpreter, mediator, observer, strategy, and 
template. The base pattern of our framework is the builder pattern, which creates a 
context to use others patterns. The factory pattern is used to select different 
approaches to solve a CFD problem. We have also used the mediator pattern for the 
communication among objects created by the builder pattern, and the observer pattern 
for data communication and parallelization.  

 
This paper is organized as follows. Session 2 depicts the design and components of 

our framework. Session 3 discusses a study case. Finally, conclusions and future work 
are listed in session 4. 

 
2. Framework Architecture 
 
We use design patterns to define the software architecture and design of the 

framework. The main pattern of our framework is the builder pattern (see Figure 1). A 
builder pattern simplifies the creation of complex objects by defining a class whose 
purpose is to build instances of other classes. Since each CFD problem may have 
different configuration and requirements, it is needed to construct a particular 
complex object for each particular problem.  Each complex object, referred to as 
Solver, is a solver for an equation on a particular mesh, using a numerical method 
with particular initial and boundary conditions. The class ConcreteBuilderSolver is 
responsible for the creation of Solver. The four components of Solver are the classes 
Equation, Mesh, NMethod, and IBConditions. Instances of these classes will be 
created in the class BuilderSolver through the methods buildEquation(), buildMesh(), 
buildNMethod(), and buildIBCondition(), respectively.   

 
The object Solver is created according to information provided by the user through 

a graphical user interface. Such input data is obtained by the class Director through 
the method contruct(). The Equation class has a reference to the interface 
ProductEquation and defines the same methods of this interface. This definition 
allows for the communication between the class Equation and any instance of the 
classes that implement ProductEquation, such as EulerEquation, HeatEquation, and 
NavierEquation. This design allows us, when needed, include another type of 
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equations with the implementation of the methods defined in the interface 
ProductEquation.  

 
 

 
Fig. 1. Builder Pattern Implementation 
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Fig. 2. Factory Pattern Implementation 

 
The interface ProductEquation is implemented as a factory pattern (see Figure 2). 

The main idea behind factory patterns is to delegate the decision of the kind of object 
to be created to other subclasses. The method factoryMethod(), which is defined in the 
class CreatorEquation and implemented in the class ConcreteCreatorEquation, 
returns an instance of ProductEquation (e.g., EulerEquation, HeatEquation or 
NavierEquation). The methods of this instance are called using the methods of the 
class Equation because there is a reference to the class ProductPanel. In the same 
way we can obtain a specific instance of the classes that implement the interface 
ProductMesh using a factory pattern again. The class Mesh will be an interface 
between Solver and any instance of the classes UnstructuredMesh or StructuredMesh.  
Both classes implement the interface ProductPanel. With little or none modification 
we can obtain a specific instance of IBCondition using the technique described above. 
In order to obtain an instance of the classes ExplicitNMethod or ImplicitNMethod, 
certain modifications are needed according to the numerical method used to solve the 
equations.  

 
The communication among the different objects is the core of the framework. If we 

considered direct communication among objects, we would lose modularity by a tight 
coupling. This problem is solved by using a mediator pattern. This pattern is a center 
of communication among the components that simplifies communication. The 
instances of Equation, Mesh, and NMethod send information to Mediator. On the 
contrary, IBCondition receives information from Mediator. The communication is 
carried out by the methods sendData() and receivedData() defined in the different 
classes, and administered by the methods in the class Mediator (see Figure 3). 
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Fig. 3. Mediator Pattern Implementation 

 
 
 
3. Case Study 
 
To illustrate the usefulness of the proposed framework, a case study of a subsonic 

unsteady turbulent flow over a NACA0012 airfoil has been performed. The governing 
equations are the Navier Stokes equations, which can be written as: 
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where ρ  is the density, u the velocity, T temperature, E the total energy, p the 

pressure, DIuuS t

3
2)( −∇+∇=  the deformation tensor, and µ and tµ  the 

laminar and turbulent viscosities. To model turbulence a κ-ε model is used, which can 
be written as: 
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The Navier-Stokes and κ-ε equations are solved by a finite-volume Galerkin 

upwind technique [8] using Roe Riemann solver [9]. The viscous terms are computed 
using a standard Galerkin method. The computational configuration and mesh of the 
case study are shown in Figure 4, such as they appear in the graphical user interface. 
The plot of Mach number lines shown in Figure 5 is for a low-Mach number 
(M∞=0.1), turbulent (Reynolds number =106) flow. We have obtained encouraged 
numerical results and performance for diverse configurations.  

 
The architecture of the framework facilitates the implementation of different 

numerical methods without major efforts.  The use of domain decomposition 
techniques as described in [4] are significantly simplified by using the observer 
pattern. This pattern governs the domain decompositions strategies and the 
communication between subdmoains. We have used mpiJava [10] for the 
implementation of the parallel algorithms.  However, the framework is independent of 
the message passing implementation used and can be modified easily as consequence 
of the programming abstractions provided by the observer pattern. 

 

 
Fig. 4. Case Study General Information and Mesh 
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Fig. 5. NACA 0012 Airfoil Mach Number Lines 

 
 
 
 
4. Conclusions 
 
An object-oriented framework for solving computational fluid dynamics problems 

on parallel computers has been presented. We argue that the combination of flexible 
domain decomposition methods with extensive use of object-oriented techniques will 
result in an efficient, flexible, and systematic process for developing parallel codes. 
We have shown how design patterns methodology contributes to produce reusable 
software. The effectiveness and advantages of the framework is illustrated upon a 
case study of a subsonic unsteady turbulent flow over a NACA0012 airfoil. Further 
research and development is needed to make the framework capabilities complete and 
tuned for performance.  
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