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Abstract. Genetic algorithms, search algorithms based on the genetic processes
observed in natural evolution, have been used to solve difficult problems in many
different disciplines. When applied to very large-scale problems, genetic algorithms
exhibit high computational cost and degradation of the quality of the solutions
because of the increased complexity. One of the most relevant research trends in
genetic algorithms is the implementation of parallel genetic algorithms with the
goal of obtaining quality of solutions efficiently. This paper first reviews the state-
of-the-art in parallel genetic algorithms. Parallelization strategies and emerging
implementations are reviewed and relevant results are discussed. Second, this paper
discusses important issues regarding scalability of parallel genetic algorithms.
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1. Introduction

Genetic Algorithms (GAs) are computational models of evolutionary
processes observed in nature, which have been applied to a wide spec-
trum of problems. For example, Caldwell and Johnston (1991), Four-
man (1985), Maini et al. (1994), Jin et al. (1997), and Rivera (1998).
Theoretical concepts were first introduced by Holland (1975), and later
described by Golberg (1989).

As complexity of the applications increases, GAs exhibit high com-
putational cost and degradation of the quality of the solutions. Efforts
for solving these shortcomings have been developed in several direc-
tions, and parallel GAs (PGAs) is one of the most significant. However,
in order to guarantee the effective use of the parallel resources, it is
necessary to ensure high scalability.

Scalability measures the ability of a parallel machine and a parallel
algorithm to use efficiently a larger number of processors. Thus, since
scalability depends on both the communication patterns of the algo-
rithm and the infrastructure provided by the machine, a good measure
of scalability should at least adequately reflect the interaction between
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these two aspects. Moreover, a scalability metric should not only in-
dicate if a parallel system is scalable, but also provide information
regarding the specific conditions required to achieve high performance.

Scalable PGAs are an important alternative for solving large-scale
problems. This paper explores the state-of-the-art in PGAs, and studies
the scalability of PGAs. Section 2 outlines GAs and describes differ-
ent parallelization strategies. Section 3 reviews some relevant results.
Section 4 discusses scalability of parallel systems and scalability met-
rics. Section 5 deals with the performance of PGAs. Finally, section 6
presents conclusions.

2. Parallel Genetic Algorithms

In this section a brief description on GAs is presented and different par-
allelization strategies are discussed. Detailed background information
on GAs can be found in Davis (1991), Golberg (1989), and Mitchell
(1997). A complete indexed bibliography of PGAs can be found in
Alander (1999).

2.1. GENETIC ALGORITHMS

GAs start with an initial population of individuals, which is generated
either randomly or with domain specific knowledge. Each individual
(chromosome) consists of a data structure, and represents a possible
solution in the search space of the problem. Usually, a problem-specific
fitness function maps the representation of the chromosome into a fit-
ness value. The fitness value measures the quality of the individual as
an optimal solution.

GAs evolve into new generations of individuals by using knowl-
edge from previous generations. The fundamental principle of GAs is
that chromosomes which include blocks of genetic information that are
contained in the optimal solution will increase in frequency if the op-
portunity of reproduction of each chromosome is related, in some way,
to its fitness value. Thus, GAs are both explorative and exploitative
methods for solving problems that are not affordable by traditional
methods.

A typical example occurs when a potential solution of a problem
may be represented as a set of parameters, which in their turn are
represented by strings of characters. The parameters are put together
to form a longer string of characters which will be the chromosome
structure. In order to create a new population, pairs of individual are
selected, based on their fitness values, and recombined using a crossover
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operator. The crossover is controlled by a crossover probability param-
eter. For example, in the one-point crossover, a biased coin is tossed
which comes up true with the specific crossover probability. Next, a
crossover point is randomly chosen. Then, both selected chromosomes
are cut at the crossover point, and the chromosome parts of the individ-
uals are swapped creating two new offspring. In addition, a mutation
operator is applied such that bits in the chromosomes are changed with
a certain mutation probability. The idea behind mutation is to enhance
diversity among the population so that premature convergence and
suboptimality are avoided.

The performance of a GA is subject to stochastic errors. Hence,
because the population is not infinite, at early iterations, high fitness
individuals may dominate the population, so that the GA converges to
a wrong solution. Usually, mutation contributes to solve this problem.

Thus, a new population is generated by using genetic operators
(selection, crossover, and mutation). The fitness values of the new indi-
viduals are evaluated, and the process is repeated until a termination
condition is satisfied.

2.2. PARALLELIZATION STRATEGIES

In general, PGAs exhibit a different behavior compared to the standard
GA. As a consequence, PGAs constitute a novel class of complex algo-
rithms for which further research is necessary. We identify four possible
strategies to parallelize GAs.

1. A global parallelization in which only the evaluation of individuals’
fitness values is parallelized by assigning a fraction of the popula-
tion to each processor to be evaluated. Also, the genetic operators
can be parallelized within this scheme. However, in most cases
it is not efficient because the genetic operators are not as time-
consuming as the fitness evaluation. A master processor performs
the genetic operators and distributes the individuals among a set
of slave processors that evaluate the fitness values (Figure ?7).
This strategy preserves the behavior of the original GA because
there is only one population just as in the sequential case. This
method of parallelization is particularly effective for complicated
fitness evaluation, and improvements in the computational time
with regard to the sequential GA can be expected.

2. A coarse-grained parallelization in which the entire population is
partitioned into subpopulations (demes). A GA is run on each
subpopulation, and exchange of information between demes (migra-
tion) is performed eventually. The critical issue is how the migration
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Figure 1. global parallelization

among demes should be implemented. For example, the event that
causes the migration, the number of individuals that migrate, and
the communication topology are important factors to be considered
in this strategy. Each one of the factors before mentioned is asso-
ciated with a control parameter. As an example, Figure ?? shows
a coarse-grained parallelization on an unidirectional ring network
with N processors.

GA2 )— -

()

Figure 2. Coarse-grained parallelization on an unidirectional ring

GA1

3. A fine-grained parallelization in which exactly one individual is
assigned to each processor. The genetic operators take place in
parallel only among adjacent processors, and the individual in each
processor is replaced by the new offspring as new generations come
out. Hence, the topology of the network strongly determines the
behavior of the GA. The local nature of the genetic operators allows
for a natural diversity in many applications. Usually, fine-grained
parallelization is implemented on massively parallel machines (Fig-
ure 77).

4. A hybrid parallelization in which several parallelization approaches
are combined. The complexity of these hybrid PGAs depends on
the level of hybridization.
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Figure 3. Fine-grained parallelization on a mesh

The different alternatives to parallelize GAs have resulted in a varied
number of implementations of PGAs. Table ??7 outlines some of the
most important PGAs currently available.

Table I. Parallel GAs software

PGA Parallelism  Topology
PGAPack global -
EnGENEer global -
GENITOR II coarse ring
DGENESIS coarse any
GALOPPS coarse any
iiGA coarse any
ASPARAGOS fine ladder
ASPARAGOS96 hybrid ring

PGAPack (Levine, 1995) is a PGA library that supports global
parallelization by a master/slave model. This package is written in
C and communication is carried out using MPI. PGAPack allows for
multiple levels of control. At the first level, the PGA is encapsulated so
that the user only has to specify the data type, the string length, and
the optimization type. At the next level, the user has more control on
the genetic operators. At the high level, the user can define functions
and operators within an object oriented frame. In general, the compu-
tational cost is reduced with this PGA implementation. However, the
speedup that can be achieved with the master/slave model is limited
by the amount of computation associated with the fitness evaluation
that can be executed in parallel.

ASPARAGOS (ASynchronous PARAllel Genetic Otimization Strat-
egy; Gorges-Scheleuter, 1989) is a fine-grained PGA that uses a ladder
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topology with connected ties to communicate the individuals. This
package incorporates the idea of isolation-by-distance by using a topo-
logically structured population where the interaction among individuals
is local. The new version, ASPARAGOS96 (Gorges-Scheleuter, 1997),
uses a ring structure and supports hierarchy of subpopulations. The
ring structure allows for a higher local differentiation compared to
the ladder topology, and in addition, the population can be reduced
without degradation of quality. ASPARAGOS96 is indeed a hybridized
implementation because migration among subpopulations is permit-
ted. When one of the subpopulation converges, it receives the best
individual from the local subpopulations.

DGENESIS (Distributed GENESIS; Mejia-Olivera & Cantu-Paz,
1994), based on GENESIS 5.0 (Grefenstette, 1990), is a coarse-grained
implementation where each subpopulation is controlled by an UNIX
process and communication is carried out using Berkely sockets. DGE-
NESIS allows for different combinations of topologies, migration rates,
migration events, and genetic operators.

iiIGAS (Injection Island GAs; Lin et al., 1994) uses hierarchical
heterogeneous subpopulations with asynchronous migrations among
demes. Each subpopulation encodes the problem using a different res-
olution, and evolves under different parameters and genetic operators.
Migration occurs from low resolution nodes to high resolution nodes.
When a subpopulation converges, it injects its best individual to the
neighboring high resolution nodes. Lin et al. (1994) showed that better
results may be obtained without speed degradation by using a dynamic
topology based on population similarity instead of a static topology.

GENITOR II ( Whitley & Starkweather, 1990) is a modular steady-
state PGA package with ranked selection and several order based crossover
operators. GALOPPS (Genetic ALgorithm Optimized for Portability
and Parallelism; Goodman, 1996) is a coarse-grained implementation
coded in C and PVM for communicating. EnGENEer (Schraudolp &
Grefenstette, 1991) is a commercial software written in C that runs
under Unix. EnGENEer has a high level of abstraction language that
permit the user to define the structure of the genetic problem within
an interactive interface.

3. Relevant Advances
Regarding coarse-grained parallelization, researchers have intended to
answer questions about how often migration should be performed (mi-

gration interval), how many individuals may migrate (migration rate),
and which is the most efficient communication network (connectivity).

aire318.tex; 10/11/2000; 14:42; p.6



Scalable Parallel Genetic Algorithms 7

Early studies by Grosso (1985) and Tanese (1989) showed that for
low migration rates, the migration of individuals does not have any
significant effect on the performance of the PGA. Moreover, there is
evidence regarding the existence of a critical migration rate below
which migration is not effective. For example, Tanese’s experiments
with isolated subpopulations showed that such a coarse-grained PGA
could find solutions of the same quality as the traditional GA at some
point during the searching, but the average fitness of the population at
the last generation was degraded. On the other hand, when migration
was allowed the average fitness was systematically improved.

Similar results for migration rate were obtained by Starkweather
et al. (1991). In their coarse-grained PGA they proposed a sort of
adaptive mutation was implemented in which the probability mutation
was augmented as the similarity between parents was increased. Thus,
the premature convergence on the subpopulations, which is critical for
a large number of demes, was overcame.

Results in Lin et al. (1994) and Hart et al. (1996) showed that
asynchronous implementations exhibit a reduced function evaluation,
and low overhead and cost compared to synchronous implementations.
For relaxed synchronous PGAs, the number of function evaluations
decreases as well as communication overhead and cost.

Hart et al. (1996) considered the effect of relaxed synchronization
on the performance of a coarse-grained topologically structured PGA.
Their implementation uses a toroidal, two-dimensional population that
is distributed among the available processors. Each processor com-
municates with a fixed number of neighbors. In the selection process
individuals interact with a fixed subset of the population that par-
tially overlaps with subsets used by other individuals. Communication
is required for selection and crossover operators, and to stop all the
processors when one of the subpopulations converges. The synchroniza-
tion guarantees that each processor has already communicated with its
neighbors before initiating the next iteration.

Other authors who investigated the effect of migration rate include
Cohoon et al. (1987), Braun (1990), Rebaudengo & Reorda (1993),
Belding (1995), Bianchini et al. (1995), and East & Rowe (1996).

Gordon et al. (1992) showed that the critical path of a fine-grained
PGA is shorter than that of a coarse-grained PGA, demonstrating the
suitability of fine-grained implementation for massively parallel ma-
chines. Gordon & Whitley (1993) compared different models of PGAs
applied to optimization problems. For the problems that they were con-
sidering, coarse-grained implementations showed a better performance.
Gordon (1994) studied spatial locality of memory references in different
models of PGAs.
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Gorges-Schleuter (1991) proposed a fine-grained PGA with elitist
strategy such that a new offspring was accepted only if it obtained a
better fitness value than the local parent. The PGA was implemented
on a sparse graph topology.

Results from Shapiro & Navetta (1994) and Sarma & Jong (1996)
showed how changes in the size and topology of the neighborhood for
fine-grained implementations affect the quality of the solutions in the
selection process.

Theoretical analysis of PGAs is difficult because of the strong in-
teraction of the parameters involved in parallel implementations. A
recent analysis by Canti-Paz (1998) used Markov chains to model the
behavior of a coarse-grained PGA. In this work it is assumed that mi-
gration occurs only after each subpopulation converges. The analysis is
based on the prediction of the quality of the solutions after an arbitrary
number of generations. Canti-Paz ensures that for this specific migra-
tion event the major improvement in quality occurs at the first two
epochs (intervals between migrations). Thus, only the first two epochs
are considered for the analysis. Interesting results can be extracted
from this work. First, the quality of the solutions improves with higher
migration rates. The communication cost will be independent of the
migration rate. Migration only occurs when a subpopulation converges
so that just one individual is sent to the neighboring subdomains, and
then it can be replicated according to the migration rate. Second, parti-
tioning the population does not result in a degradation of quality of the
solutions as long as the migration rate is not very low, and only a few
epochs are necessary to achieve the same solution as the sequential GA.
Third, increasing the connectivity improves the quality of the solutions,
but a high degree of connectivity increases the communication cost.

The main deficiency of this analysis is the lack of generality. The
model corresponds to a very particular migration event. A more general
approach requires that performance be expressed in terms of something
more than just the quality of the solutions.

Earlier, Suzuki (1993) had already used Markov chains to analyze
the performance of sequential genetic algorithms. Muhammad et al.
(1997) developed a fine-grained PGA based on a Markov chain. The
implementation used an one-dimensional toroidal topology. The tran-
sition rules for selection, crossover and mutation operators are inte-
grated into a Markov transition rule to model the fine-grained PGA.
From the resultant transition matrix, the mutation rate emerges as the
control parameter for the Markov chain that models the fine-grained
PGA. Muhammad et al. demonstrated the convergence of the fine-
grained PGA to a stationary distribution when the mutation rate is
held constant. The convergence to a stationary distribution does guar-
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antee the asymptotic convergence properties, but it does not assure the
convergence to a global solution.

4. Scalability of Parallel Systems

A parallel system is defined as the combination of a parallel algorithm
and a parallel machine. Intuitively, scalability is the measure of the
ability of a parallel system to effectively utilize an increasing number
of processors. By increasing the number of processors, the efficiency
provided by an architecture for a given algorithm decreases because of
the need of synchronization and communication. Amdahl (1967), for
example, pointed out that when the problem size is fixed, speedup is
upper bounded by the reciprocal of the sequential part of the algo-
rithms without regard to the number of processors used. Actually, for
fixed size problems, speedup is limited because of the overhead, which
grows with increasing number of processors, or because the number of
processors exceeds the degree of concurrence of the algorithm, that is,
the maximum number of tasks which can be executed simultaneously.
As a consequence, the problem size should be increased in order to
achieve high performance.

4.1. ISOEFFICIENCY

Grama et al. (1993) and Gupta & Kumar (1993) stated that the relation
between the problem size and the maximum number of processors that
can be utilized in a cost optimal fashion for solving a problem is given
by the isoefficiency function. They define problem size W as the number
of basic operations required by the fastest serial algorithm to solve a
given problem. Tg(W) = (W) is the sequential execution time of the
best serial algorithm, and T}, (W, p) is the parallel execution time of the
algorithm on p processors. The cost of a parallel system is defined by
the product pT),, and a parallel system is cost-optimal if and only if
the cost is asymptotically of the same order of magnitude as 7%, that
is, pT,, = ©(W).

The overhead due to communication cost and synchronization can
be written as

TO(VV,p) :pr+W (1)

Thus, efficiency, which is the ratio between the sequential execution
time and the cost of the parallel system, is given by
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T, 174
E = e ——
pI, W +T,(W,p)
1 (2)
= To(Wp)
1+ L)

If the system size p increases, then E decreases because T,(W,p)
increases with p. On the other hand, if W is increased, with a fixed
p, then E increases because T, (W, p) grows slower than W. Hence, the
efficiency may be maintained constant by increasing W as p increases.
This relation is referred to as isoefficiency function.

Manipulating algebraically the equation (2), we can obtain the iso-
efficiency function

W = KT,(W,p), where K = % (3)

A parallel system is scalable if and only if its isoefficiency function

exists. If W needs to grow exponentially with respect to p, the parallel

system is poorly scalable because it is difficult to hold the efficiency

constant unless W is enormous. On the contrary, if W grows nearly
linear with p, the parallel system is highly scalable.

4.2. EFFECTIVENESS

Additional factors regarding the applications that use the parallel sys-
tem must be considered in order to get a realistic metric to measure
scalability.

Singh et al. (1993) proposed a methodology to evaluate the scaling of
parallel systems regarding application parameters. First, it is necessary
to understand the relationships among the application parameters in
terms of their error contribution. Second, an equal-error principle is
used to generate scaling rules for the parameters. The equal-error prin-
ciple states that the sources of error contribute approximately in similar
quantities to the overall error. Finally, the impact of the scaling rules
on the effectiveness and architectural design parameters is evaluated.

Luke et al. (1997) proposed a metric based on the relation between
cost and performance of parallel systems, where the methodology pre-
sented in Singh et al. (1993) is implicit into the concept of scaling path.
Let A be a set of algorithms to solve a given application, and W («) the
number of operations required by an algorithm « to solve the problem.
Work is defined as the minimum number of operations required to solve
the application, that is
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W= &neig W(a). (4)

The work needed to perform an application depends on certain
application parameters x1,zs,...,Z,. A scaling path ¢ describes the
application parameters such that W(xz1(€), z2(§),. .., z,(£)) increases
as ¢ increases. Thus, we have that

oW
Tp(aa Hapa 5) . (5)
Cost = pTy(a, H,p,§).

Per formance =

Notice that while work depends on the application parameters, the
parallel execution time depends on the application parameters as well
as the algorithm, the architecture, and the system size.

Luke et al. (1997) defined optimal effectiveness as

W(E)
T (e, H,p,ﬁ)}' ®)

This metric measures the maximum potential for a parallel system
to deliver cost effective performance involving the parameters of a
particular application.

Copt = mz?,x{

5. Performance of a Coarse-grained Implementation

In the second part of this survey we discuss the performance of PGAs in
a specific context. However, the discussion can be extended to general
implementations. A coarse-grained parallel version of the algorithm
presented in Rivera (1999) is used for the discussion. The implemen-
tation has been tested on a SGI Origin 2000 with 64 processors. In
our discussion the problem size W is the required percentage of good
solutions, p the number of processors, a the migration rate, and § the
connectivity of the topology. Thus, if « = 0.3 and 8 = 2, then 30% of
the population in a deme migrates to two neighbors processors. Table
?? shows the effectiveness vales (normalized by a factor of 10°) that
are obtained for a total population of 10.000 individuals. The parallel
time £, is measured in seconds, and optimal effectiveness values for each
combination of parameters are highlighted. The maximum effectiveness
gives us the best combination of parameters that delivers cost-effective
results for the specific application.

Next, as shown in Figure 7?7, we compare two different combinations

of parameters: (A) = {a =0.7,8 =8} and (B) = {aa =0.3,5 = 16}. It
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can be observed that for small values of WW combination (B) performs
better than combination (A), and vice versa for large values of W.
Table 7?7 shows estimates of k and ¢ such that

Topt = kpWY. (7)

Thus, a power law approximation can be used to characterize the be-
havior of the PGA. In this particular case, the combination (A) with
g ~ —0.3 is found to be more scalable than the combination (B) when
a high degree of precision is required. In addition, it can be noted that
the optimal number of processors can be also modeled by a power law
of the form

Popt = kar- (8)
For example, for the combination (A) we obtain &, ~ 35.00 and r ~ 0.7.
Figure 7?7 outlines the behavior of the PGA for the combination of
parameters (A). As pointed before, a similar analysis can be carried
out for general PGA implementations.

14
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Problem Size

Figure 4. Scaling of W

6. Conclusions and Further Research

Relevant issues concerning PGAs have been discussed in an effort to
review the current state-of-the-art. Parallelization strategies have been
depicted and some of the most important implementations currently
available have been pointed out.
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Table II. Effectiveness values

| W | a|B|p=4]|p=8]|p=16]p=32|

9.71 10.05 9.36 8.91

03| 8 12.01 10.31 10.35

16 13.85 11.91

9.51 11.01 9.76 8.71

50% | 0.5 | 8 12.05 | 11.35 10.51
16 9.81 9.36

8.31 9.81 11.01 10.12

0.7 8 10.01 | 13.66 11.03

16 10.91 9.01

6.91 8.72 7.51 6.91

03| 8 10.02 9.30 8.00

16 11.75 10.61

8.61 7.62 6.91 5.96

70% | 0.5 | 8 8.35 7.62 6.87
16 8.31 7.93

6.32 8.35 10.31 9.15

0.7 8 9.71 12.35 10.91

16 9.81 10.15

4 8.51 9.35 8.90 8.98

03| 8 9.60 9.83 10.11

16 8.91 9.15

7.15 7.32 6.41 6.95

90% | 0.5 | 8 8.31 7.96 8.96
16 7.61 8.15

4 5.41 7.61 7.65 10.98

0.7 8 8.71 10.01 11.45

16 8.31 9.36

In this paper, we have discussed how to configure PGAs that will
deliver cost-efficiency performance. It has been shown that the best
combination of control parameters, which allows for an effective use
of an increasing number of processors, can be identified by using the
maximum effectiveness values. In addition, our experiments showed
that a power law approximation can be used to characterize the be-
havior of a particular PGA. This power law can also be used to derive
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Table III. Estimates of kr and ¢

Parameters kr q
(A) 11.0le— 0.5 —0.3
(B) 9.80e — 0.5 —0.7

18
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| |
0.2 0.4 0.6 08 1 10 14 18 22 26 30 34 38
Problem Size Optimal number of processors

Figure 5. Scaling for (A)={a =0.7, 8 =8}

simple heuristics for identifying crossover points where a particular set
of parameters becomes more effective than another.

Scalability analysis is a valuable tool for designing PGAs that com-
bine different topologies, migration events, and hybridization. Cur-
rently, we are incorporating scalability functions into an object-oriented
environment that will provide a framework of classes for a typical PGA.
Our work in progress indicates that this approach enables easy devel-
opment of high performance PGAs with the feature of choosing among
several alternatives depending on the problem and machine parameters.
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