
An Adaptive Quality of Service Based Scheduling Algorithm for Wide Area Large
Scale Problems∗

Wilson Lozano and Wilson Rivera

Parallel and Distributed Computing Laboratory
Electrical and Computer Engineering Department

University of Puerto Rico at Mayagüez, Puerto Rico 00680, USA
{wilson.lozano, wilson.rivera}@ece.uprm.edu

∗ This material is based upon work supported by the National Science Foundation under Grant No. 0424546.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation

Abstract

This paper explores the problem of dynamically
scheduling large scale applications over wide area
networks and then proposes an adaptive scheduling
algorithm to provide quality of service. Our adaptive
algorithm takes into account unexpected events and
priority fluctuations and gives high priority to jobs with
low probability of failure. Experimental results show
that the new approach outperforms traditional
scheduling approaches in grid computing environments.

1. Introduction

The availability of powerful computers and high-
speed network technologies as low-cost commodity
components has changed the way we solve large scale
problems. These technology opportunities have led to
the possibility of using geographically distributed
computers as a single, unified computing resource. Grid
computing enables coordination, storage and
networking of resources across geographically dispersed
organizations in a transparent way for users. The first
generation of grid technologies has demonstrated the
feasibility of grids for addressing challenging large
scale problems (e.g. GridPhyN and Teragrid among
many others). Next generation of grid applications will
be increasingly dynamic. This implies that the current
static infrastructures will not be adequate unless
adaptive functionalities are provided.

Emerging grid applications demand efficient data
and resource management mechanisms. In this paper,
we explore the problem of dynamically scheduling large
scale applications over wide area networks and then
propose an adaptive scheduling framework to provide
quality of service. Our adaptive algorithm takes into
account unexpected events and priority fluctuations and
gives high priority to jobs with low probability of

failure. The organization of this paper is as follows.
Section 2 discusses the state-of-the-art in wide area
scheduling Section 3 describes the proposed wide area
scheduling model and the dynamic distributed
scheduling algorithm as well as a dynamic framework to
implement the scheduling strategy. Experimental results
are presented in section 4.

2. State-of-the-Art in Wide Area Scheduling

Although scheduling has been studied in various
contexts, with the emergency of grid computing, unique
challenges have arisen. Grids are shared infrastructures
with no central control, where the applications compete
for the best quality of service from remote resources. In
addition, grids exhibit fluctuations in the availability of
resources and communication latencies over multiple
resource administrative domains. The emerging grid
technology [1, 2] has led to the need of a new
generation of applications capable of adapting its
execution to changing conditions. Therefore, the
development of adaptive application schedulers has
become a major challenge [3, 4,]. Research projects,
such as AppLeS [5] and Nimrod/G [6], have
demonstrated that periodic evaluation of the schedule in
order to adapt it to changing grid conditions and
application dynamic demands can result in significant
improvements in performance. The Application Level
Scheduling (AppLeS) project primarily focuses on
developing scheduling agents for individual
applications. Thus, the AppLeS framework contains
templates that can be applied to problems that are
structurally similar and have the same computational
mode. Templates have been developed for parameter
sweep [7] and master/slave [8] type applications.
Nimrod/G is a grid resource broker that provides
support for formulation of parameter studies on
computational grids as well as facilities for resource

discovery and scheduling. Prophet [9] is an automated
scheduler for data parallel applications that utilize a
performance model for predicting application
performance on different resource combinations. Gallop
[10] is a wide-area scheduling system that implements
scheduling models across different sites.

3. An Adaptive Wide Area Large Scale
Scheduling Framework

The proposed scheduling strategy for grid
environments takes into account the following issues.
First, scheduling must be guided by Quality of Services
(QoS) criteria to get a better match between applications
and resources. Second, resources provide non dedicated
services to the applications so mechanisms to predict
computation time and probability of failure are required.
Third, the scheduling algorithm must be flexible enough
to allow adaptive reconfiguration of the scheduler
components.

3.1 Wide Area Scheduling Model

We assume that the resources are connected via two-
level hierarchical networks. The first level is a wide area
network that connects local area networks at the second
level. Users submit job specifications with their QoS
requirements. The scheduler then discovers appropriate
resources for processing the job and schedules the tasks
on the resources. In order to discover suitable resources,
the scheduler has to predict execution times on the
available resources and verify QoS capabilities and
availability of the resources. Re-scheduling mechanisms
are then implemented to adapt scheduling to service
dynamics.

3.2. A New Urgency Criterion

Our scheduling strategy focuses on providing high
priority to jobs with low probability of failure. To
achieve this, an urgency criterion is introduced to
account for relevance, laxities and probability of failures
of incoming jobs. The proposed urgency criterion is a
combination of one static parameter and two dynamic
parameters. These parameters are defined as follows.

1. Criticity (Relevance). This static factor is
initially established by the user according to
experience and/or customer importance. Criticity
values range between 0 and 100.

2. QoS (Quality of Service). Scheduling involves

matching of job needs with resource availability
and capability and addressing the concern of the

quality of the match. Different QoS metrics can
be defined. For instance, the desirable
bandwidth for the application or the required
speed of processors

3. Laxity. This dynamic factor is defined as Laxity

= Jd - (t + Jlat); where Jd is the Job deadline, t
is the actual time of calculation, and Jl is the
expected latency of the Job. Laxity as defined
above is not bounded and may conduct to
unrealistic urgency criteria values. One way to
compensate this is to define a modulator factor K
(units of time) as defined in [11].

3.3. The QB-MUF Algorithm

The QB-MUF (Quality of Service Based Maximum
Urgency Factor) algorithm iteratively assigns jobs to
resources by considering resource availability and job
urgency factors. If there are not resources available to
process a job, the job is sent to a queue. The urgency
criteria of the jobs in the queue are updated with certain
periodicity to assure the flow of jobs with high
probability of success. The general algorithm can be
viewed as follows

While (There are jobs to schedule)
if (There are available resources)

for each job i to schedule
calculate job urgency;
allocate job;

end for
else

if (Queue.length >0)
update urgency factor and

verify QoS
end if
insert ordered job to the queue
re-schedule jobs

end if
end while

3.4. Framework Architecture

The proposed urgency criterion and scheduling
algorithm are embedded into a dynamic scheduling
framework. The main goal of this framework is to
provide a reusable infrastructure to design and evaluate
scheduling strategies. An important feature is that the
framework has the flexibility to allow adaptive
components. The Resource Manager gets the resource
load information from a profiler placed inside of each
local network. The profiler also maintains a forecasted
load and calculates a tuning load. Such a tuning load is

calculated from the real load and the forecasted load.
The Global Scheduler uses the information gathered by
the Resource Manager and static job information to
generate scheduling events. A Job Monitor interacts
with the Exchange Dispatcher and the Resource
Manager to verify that the estimated conditions for
scheduling are appropriate. If everything goes fine, the
Dispatcher sends the job to its next step through the
Workflow Engine. On the other hand, in the case of a
failure, a contingency or a change in the schedule
conditions occurs, the Dispatcher has to redirect the job
according to predefined policies to manage exceptions.
To reduce system overload, Local Schedulers are
implemented at each local network to deal with local
allocation of jobs over available resources.

4. Experimental Results

We use GridSim [12] as simulation tool to implement
and evaluate the QB-MUF algorithm. GridSim is a Java-
based discrete-event grid simulation package, which
allows modeling and simulation of entities in parallel
and distributed computing systems. We took advantage
of the GridSim capability for implementing new
scheduling policies to deploy our QB-MUF algorithm
and evaluate its performance.

Throughout the experimentation we compare the
behavior of our QB-MUF algorithm with respect to two
other scheduling approaches: The Minimum Laxity
First, denoted as Laxity, and the well known First In
First Out (FIFO) scheduling algorithm. Two metrics

were observed throughout the experimentation. First,
the number of successful jobs delivered. Second, the
mean waiting time of successful delivered jobs. The
whole set of experiments ran under the same conditions,
except in those explicitly mentioned cases. Job arrival is
a draw from an exponential distribution while, while the
job sizes follow a normal distribution. Failures are
induced to jobs so that QoS requirements may be
eventually violated. The first probability of failure
ranges from 40% to 55% and the second failure ranges
between 20% and 40%. The joint probability ranges
between 50% and 70%.

Figure 1 shows the order of execution of jobs for the
three scheduling algorithms. Notice that for QB-MUF
jobs with high QoS deliveries are first executed. Figure
2 shows the results for a total of 1000 jobs with arrival
rate of 0.35. The mean processing time is defined as the
average of the time that a job has to wait since it was
received until its start processing. Results show a
reduction of waiting processing time of the QB-MUF
over laxity and FIFO approaches. QB-MUF exhibits a
better behavior in terms of the number of successful
jobs over time compared to the traditional approaches.
We point out that for the experiments illustrated here
the advantage of the QB-MUF algorithm is more
evident around specific units of time (for example
16,000 units of time in the case illustrate in Figure 2).
This is because QB-MUF gives more importance to
those jobs that have god expectations of finishing
successfully.

QoS Value Vs Execution Order

0

20

40

60

80

100

120

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

Execution Order

Q
oS

 F
ac

to
r

Fifo
QBMUF
Laxity

Figure 1: Quality of Service Guided Execution Order; jobs=100; arrival rate=0.35

Successful Jobs Vs Time

0

100

200

300

400

500

600

700

800

0

13
50

27
00

40
50

54
00

67
50

81
00

94
50

10
80

0

12
15

0

13
50

0

14
85

0

16
20

0

17
55

0

18
90

0

20
25

0

21
60

0

22
95

0

24
30

0

25
65

0

27
00

0

28
35

0

29
70

0

31
05

0

32
40

0

Time (Minutes)

N
um

be
r o

f S
uc

ce
ss

fu
l J

ob
s

Fifo QBMUF Laxity

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(S

ec
)

Mean waiting time for successful jobs

QBMUF FIFO Laxity

Figure 2: (a) Number of successful jobs; (b) Mean waiting time; jobs=1000; arrival rate=0.35

5. References

[1] I. Foster and C. Kesselman, Eds. The Grid:

Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999.

[2] F. Berman, G. Fox, and T. Hey, Eds. Grid
Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons, 2003.

[3] F. Berman and R. Wolski, Scheduling from
perspective of the application. Proceedings of the
Symposium on High Performance Distributed
Computing, 1996.

[4] J.M. Schopf, Ten actions when superscheduling.
Technical Report WD8.5, Global Grid Forum,
2001. Scheduling Working Group.

[5] F. Berman, R. Wolski, H. Casanova, W. Cirne, H.
Dail, M. Faerman, S. Figueira, J. Hayes, G.
Obertelli, J. Schopf, G. Shao, S. Smallen, N.
Spring, A. Su, and D. Zagorodnov, Adaptive
Computing on the Grid Using AppLeS IEEE
Transactions on Parallel and Distributed Systems
(TPDS), 14(4), 369-382, 2003.

[6] R. Buyya, D. Abramson, and J. Giddy, A
computational economy for Grid and its
implementation in the Nimrod/G resource broker.

Future Generation Computer Systems, Elsevier
Science, 2002.

[7] H. Casanova, G. Obertelli, F. Berman, and R.
Wolski, The AppLes parameter sweep template:
User-level middleware for the Grid. Proceedings of
Supercomputing 00, 2000.

[8] G. Shao, R. Wolski, and F. Berman, Master/slave
computing on the Grid. In Proc. Heterogeneous
computing Workshop, 2000.

[9] J.B. Weissman, “Prophet: Automated scheduling of
SPMD programs in workstation networks.”
Comcurrency: Practice and Experience, 11(6),
1999.

[10] J.B. Weissman, Gallop: The benefits of wide-area
computing for parallel processing. Journal of
Parallel and Distributed Computing, 54(2):183-
205, 1998.

[11] W. Lozano and W. Rivera, A scheduling
framework applied to digital publishing workflows.
Proceedings SPIE Vol. 6076, 198-209, Digital
Publishing, 2005.

[12] A. Sulistio, G. Poduvaly, R. Buyya, and C. Tham,
Constructing a grid simulation with differentiated
network service using gridsim, Proceedings of The
6th International Conference on Internet
Computing (ICOMP'05) , 2005.

