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Abstract 
 

We describe a tool that implements a set of services 
to manipulate and store data from a radar network in a 
transparent way to end users. A major requirement of 
this system is data availability and reliability. 
Consequently, we have implemented a redundancy 
schema based on the Information Dispersal Algorithm 
(IDA). Preliminary results show that the IDA based 
replication provides better reliability and less storage 
spending than traditional replication. 
 
1. Introduction 
 The National Science Foundation Engineering 
Research Center for Collaborative Adaptive 
Sensing of the Atmosphere (CASA) is focused on 
developing Distributed Collaborative Adaptive 
Sensing (DCAS) [1] as a systems technology to 
improve our ability to monitor the earth’s lower 
atmosphere. Current approaches to sampling the 
first three kilometers of atmosphere are physically 
limited in their ability to provide the required 
resolution and coverage. For example, radar 
technology is currently limited by the focus on 
long range sensing by single instruments. 
Requiring radar to view distances up to 240km, as 
in the case of NEXRAD [2], introduces the 
problem of the earth’s curvature [3]. As the range 
increases away from the radar, the earth’s surface 
curves away under the radar beam. This causes the 
volume of atmosphere being observed to be located 
at an increasing height above the earth’s surface. 
The radar is unable to observe the atmosphere 
close to the earth’s surface where people live. 
DCAS aims to radically alter the radar paradigm. 
Rather than relying on single radar to provide long 
range (hundreds of kilometers) coverage, DCAS 

proposes to mosaic the output of lower power 
shorter range (tens of kilometers) radars.  
 It must be acknowledged that reducing the 
range would require an increase in the number of 
radars to cover the same land area. By directly 
comparing areas, reducing the maximum required 
range from 240 km to 30 km would require 
approximately 64 short range radars to cover the 
area of the single long range radar. While this may 
appear to detract from the DCAS argument an 
analogy may be made with the field of computing. 
Recent years have shown the utility in using many 
commodity computers networked to form a larger 
system in the place of a single more expensive, 
larger system. The act of networking many 
inexpensive radars to cover the same area as a 
single high power radar introduces new capabilities 
into the system, such as fault tolerance and 
adaptability of the network sensing strategy, which 
the larger systems are currently not capable of.  

A parallel development in the technology 
landscape is grid computing [4], which involves 
coordination, storage and networking of resources 
across dynamic and geographically dispersed 
organizations in a transparent way for users.  The 
Open Grid Services Architecture (OGSA) [5], 
based upon standard Internet protocols, is 
becoming a standard platform for grid services and 
application development. The integration of grid 
computing and radar network technologies enables 
the complementary strengths of these technologies 
to be realized in an integrated platform. However, 
it poses several challenges such as the need to 
comply with emerging APIs for grid and Web 
services, the coordination of communication, and 
the requirement of a more data-centric 



infrastructure focused on distributed services. In 
this paper, we look at the technical problems of 
integrating radar data into grid architectures and 
present a grid service based infrastructure to 
transport, manipulate and store data from different 
radars, while preserving data integrity.  

The organization of this paper is as follows. In 
section 2, the grid integration approach of the radar 
network to a grid infrastructure is discussed. In 
section 3, the problem of radar availability and 
reliability is discussed and solutions to perform 
data replication over the grid infrastructure are 
presented. Experimental results are presented in 
Section 4. Finally, conclusions are listed in section 
5.  
 
2. Grid Implementation  

The PDClab Grid Testbed, deployed at the 
University of Puerto Rico-Mayaguez, is an 
experimental grid designed to address research 
issues, such as the effective integration of sensor 
and radar networks to grid infrastructures. The 
PDClab grid test-bed components run CentOS 4.2 
and the Globus Toolkit 4.0.11.  

The resources available include:  
  
o An IBM xSeries Linux cluster with 64 

nodes, dual-processor at 1.2GHz, 53GB of 
memory and 1TB of storage. 

o Eight (8) IA-64 Itanium servers, dual 
processor at 900 MHz, each with 8GB of 
memory and 140GB of SCSI Ultra 320 
storage  

o Two (2) IA-32 Pentium IV servers, dual 
processor at 3 GHz, each with 1GB of 
memory and 120GB of ATA-100 storage  

o One (1) IA-32 Pentium III server, dual 
processor at 1.2 GHz with 2GB of memory 
and 40Gb of SCSI Ultra 160 storage  

 
For the design and development of a grid-service 
based system to access and manipulate radar data, 
the initial approach considered is a grid based 
system which includes a Grid Portal Interface 
developed using Gridsphere2 based portlet 
framework, a distributed storage system to radar 
data management, and Grid services implementing 
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distributed algorithms.  The Grid Portal Interface 
provides transparent access to end-users. This 
interface allows to end users the manipulation of 
both, processed and raw radar data, as well as 
visualization of weather information, such as 
reflectivity in order to estimate rainfall rate over 
the west area of Puerto Rico.  
 Raw data from radars are sent to a data server 
via wireless communication. GridFTP3 is used to 
improve data transport from the data server to the 
PDCLab Grid Testbed (see figure 1).  Data 
exchange between server and the Grid testbed is 
authenticated using Grid Security Infrastructure 
(GSI). Preliminary tests to transport data using the 
globus-url-copy client and the gsiftp protocol, have 
been successful. 
 
 

 
Figure 1:Grid Testbed and Radar Integration 

 
 
 Data files are dispersed using the Information 
Dispersal Algorithm, explained in the next section, 
with a redundancy level of 100%.  At the same 
time these file blocks are sent to the grid testbed 
using gsiftp protocol, in a 1:1 distribution, meaning 
a block of file per node. Original files are erased 
from the server to safe storage resources and the 
data remains distributed in the grid. A log file is 
preserved in the server to register the scans per 
day. Relevant information about the distributed 
files is also preserved in the server. When an end-
user enters the portal, a single selection form is 
displayed to allow the user choose the interest date. 
After selection of the data set, the client can 

                                                 
3 http://www.globus.org/toolkit/docs/4.0/data/gridftp  
 



request for specific scans, at this moment the data 
still remains in the grid.  
 
3. Radar Data Availability and Reliability  

Implementation of redundancy schemas is a 
common strategy to enhance reliability in data 
storing [7]. Two different redundancy strategies 
have been implemented and analyzed: A simple 
replication schema [8] and the Information 
Dispersal Algorithm (IDA) [9]. 
 
3.1 Information Dispersal Algorithm 

The information dispersal algorithm (IDA) was 
proposed as a fault-tolerance technique to be used 
in secure and reliable storage systems. In the basic 
approach, a file F is striped into n blocks of size 
|F|/m, where |F| is the size of the file and m is the 
number of blocks required to recovery the file F.  
A set of secret keys are used to disperse the file, 
providing confidentiality to the information. Since 
m ≤ n, the redundancy level given by (n/m-1)%, 
can be selected to be smaller than replication 
technique.  The storage spending is |F|*(n/m). An 
important feature of this technique is that any m 
blocks will reconstruct the file and labels are not 
necessary for each block. Additionally IDA 
tolerates up to r failures, where r = n - m. Hence, 
IDA guarantees a higher availability.  

Let F= b1, b2, b3,… be a file, where bi is an 
integer taken from a certain range [0 … (2B -1)]. If 
bi is two bytes long, as in the actual 
implementation, then 0 ≤ bi ≤ 65535. Let p be a 
prime number greater than bi. Each bi is an element 
of the finite field Zp where all arithmetic operations 
are done in mod p. Since p > (2B -1), this implies 
an excess of one bit per byte when integers greater 
than (2B -1) are obtained, this requires a storage 
space increment. In order to avoid the space waste, 
all bi values are represented as polynomials with 
binary coefficients 
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degree irreducible polynomial p(x) instead of the 
prime p [10]. The polynomial must suffice 
( [ ]xZxp 2)( ∈ ) in such a way that all operations 
can be done in the finite field E=GF(2B). GF refers 
to “Galois Field”. 

In order to disperse F, a set of n vectors 
E a ,  ,a ,a ,a n321 ∈… must be chosen, each of 

length m, such that every subset of m different 

vectors is linearly independent. These vectors are 
the keys that will be used to disperse every block 
of the file. 

Let Anxm be a matrix whose ith row is ai. The file 
is divided into sequences of length m (b1, b2, b3, …, 
bm) and the dispersal operation is achieved 
mapping each sequence bj into a new sequence of n 
elements using Anxm.  
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Each resulting element ci is stored in a separated 
block of file. 

In order to reconstruct the file, m blocks are 
required (s1, s2, s3, …, sm) and the recovery 
operation is performed as follows: let Bmxm be a 
matrix whose rows are (as1, as2, as3, …, asm). To 
recover the first m elements of F, the first element 
from each different block is needed. The whole file 
is obtained mapping sequences of m elements from 
each block into sequences of m elements using the 
inverse of Bmxm. 
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Note that the inverse of the Bmxm matrix is 

guaranteed to exist since the rows of matrix A are 
mutually independent, which implies that any 
submatrix (in this case Bmxm) is not singular and 
thus invertible by deleting m rows of Anxm,.  

An Anxm matrix with the properties above 
mentioned is the Vandermonde matrix. The ith row 
of this matrix is defined as 

13210 ,...,,,, −niiiii . 
By definition, this matrix has the property that 

any submatrix formed by deleting m rows of it, is 
invertible. Additionally any matrix derived from 
this matrix by a sequence of elementary matrix 
transformations, will maintain this property [11]. 

Finally, an irreducible polynomial must be 
chosen. For the current implementation the 
polynomial p(x) of degree B over GF(2B), when B 
= 16 is  

1)( 31216 ++++= xxxxxp . 



The implementation of the IDA involves 
several operations over finite fields. In this case 
over GF(216). IDA is implemented as follows: 
 

(1) Create the dispersal matrix A nxm which 
must obey the properties described before.  

(2) Divide the file F into sequences of m 
elements, where each element is 2 bytes of 
size. Note that |F| must be divisible by m, 
therefore, padding must be added. In order 
to disperse the file, each sequence is 
multiplied by the matrix A to obtain the 
new sequences. The first block will have 
the 1st element from the each new 
sequence. The second block will have the 
2nd element from that sequence and so on.  

(3) A unique tag for each block must be 
established before these are written as 
separated files. This tag corresponds to the 
ith row of the matrix A. this tag is 
necessary to choose the correct recovery B 
matrix. 

(4) After the tagged files are ready, they must 
be distributed in n nodes or according to 
the established data distribution strategy. 
The two first bytes of each file are used to 
identify the correspondent row. Thus a 
maximum of 216 blocks are permitted. The 
complete path of these files will be 
registered in a log file. 

(5) In order to recover the file F, the existence 
of at least m blocks must be verified; this 
condition is necessary and sufficient to 
achieve the recovery operation. The two 
first bytes of each file are read to identify 
the row of the matrix A. The algorithm 
chooses the first m files and creates the 
recovery matrix B with the rows found. 
Then the inverse of the B matrix is 
calculated. 

(6) Reconstruct the first sequence of m 
elements from the original file multiplying 
the matrix B-1 by the sequence formed by 
all the first elements from each file found. 
Similarly, the second sequence from the 
original file is obtained transforming the 
sequence consisting of the all second 
elements from each file and so on. 

(7) Finally, padding must be removed, if 
necessary, to obtain the original size of the 
file. 

 
4 Experimental Results 

A set of experiments have been carried out with 
the aim to compare these algorithms and this way, 
determine the advantages and the disadvantages of 
each one. For our performance analysis we 
consider the total number of blocks after applying 
redundancy (TB), the size of each block (BS) and 
the added redundancy (AR) as parameters and 
measure the access reliability (R). In each case the 
storage spending (SS) required to perform 
redundancy. 
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   a)   
   b) 
Figure 3: Reliability vs Added Redundancy 
comparison. a) m=5, p=0.4, b) m=10, p=0.6 
 
Information dispersal algorithm shows a better 
access reliability than replication algorithm. As a 
reference point, for an access reliability R = 0.9 
when the probability of failure is p = 0.4, m = 5, 
the added redundancy for IDA is AR = 120 %, 
while in the replication approach the added 



redundancy must be approximately AR ≈ 300 % 
(Figure 3(a)). Note that, for replication algorithm, 
AR increment is every 100%, because the 
redundancy is performed using multiplication with 
integer numbers. Figure 3(b) shows the behavior of 
the algorithms when the probability p = 0.6 and m 
= 16.  The reliability of replication approach is 
quite deficient if the probability failure increments.  

Note that, as shown in Figure 3, the reliability 
for IDA is improved when m is incremented 
compensating a higher probability of failure. 
However, the reliability for replication is 
downgraded if the number of blocks is incremented 
and is worse still if p is higher.  In contrast, a 
higher number of m involves a even higher number 
of total blocks (TB) and a reduction in the block 
size (BS). A small BS can be desirable to obtain 
weightless blocks to send them over a loaded 
network. In turn a higher TB involves a higher 
number of nodes, if the node-block relationship is 
1:1. Redundancy is an important feature to be 
taking into account when radar data must be 
manipulated, because the size of this data is usually 
large. Therefore, a proper redundancy must be 
selected to avoid storage overhead.  

Experiments involving time measurements vs. 
data size, take as reference data size from National 
Climatic Data Center. This data is a Level II base 
data [12], available in compressed tape archive 
format. It contains data per day from specific 
NEXRAD Level II radar. The compressed data for 
a day is about 150 MB, while uncompressed is 
about 2.3GB. Note that this is the data mount for 
24 hours of continuous scan. For rain fall 
measurements and precipitation estimation, the 
primary implementation of DCAS network requires 
less than 8 hours of continuous scan.  Considering 
all the exposed before and the limited transmission 
due to wireless communication as mentioned, 
testing is achieved with data size range from 
100MB to 1GB. 

In order to improve elapsed time measurements 
a comparison point is established. Suppose a 
minimum access reliability of 90 %. If p=0.4, is 
required to provide data availability in the DCAS 
network, an access reliability R ≥ 0.9 can be 
obtained with m=8, r=5 (AR = 400% and R=0.921) 
for replication algorithm. Similarly, for IDA if R ≥ 
0.9, m= 8, r=10 (AR= 125 % and R=0.942). Even 
though the added redundancy is lower for IDA than 

Replication Algorithm, the elapsed time required to 
complete dispersal and recovery operations in IDA 
is significantly higher than the replication 
approach. Figure 4 shows a comparison between 
dispersal and recovery operations for both 
algorithms with several data sizes. 
 

 
    a)   
   b) 
Figure 4: Data Size vs. Elapsed Time 
comparison. a)IDA, b)Replication 
 
 
As is shown in figure 4(b), the replication 
algorithm is a lot faster than IDA in both 
replication and recovery operations. Note that, 
when a file of size 1GB is required to be 
distributed, IDA takes long about 20 minutes and 
replication algorithm only takes 3.5 minutes. 
 
5. Conclusions  
 Implementations of two redundancy 
schemas to perform radar data management are 
presented. The reliability was the metric selected 
since it is an important parameter in the DCAS 
systems. At this stage, Information dispersal 



algorithm shows a better data reliability than 
replication algorithm with less storage spending. 
However, this desirable behavior has a 
computational cost which implies higher response 
times than replication technique. Enhance time 
execution of the schemas is a current effort, which 
is focused in the replacement of the standard by 
high performance libraries. 
 Radar system integration with grid 
computing technologies has been discussed as 
well. Preliminary results demonstrate the 
feasibility of such interaction, when independent 
and non grid based applications can be integrated 
to the grid infrastructure with minimum 
requirements. The tested applications were data 
management related, especially data movement. A 
large amount of data was transported using 
GridFTP protocol with GSI support, and the 
integrity of the data was preserved successfully.  
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